Connectivity Analysis of WSN Nodes using Neighborhood Search Technique (WSNNST)


Author: Mahmoud Zaki Iskandarani

Abstract: A new approach to wireless sensor network (WSN) communication through multi-hop routing is investigated in this work. The proposed approach utilizes search radius expansion in order to find highest energy nodes within a WSN network and preserves the energy of the lowest energy nodes. This approach which is built on trust in terms of providing good quality communication channels between a source node and a destination node considers energy as one parameter of trust that will enable strong, reliable communication channels and shorter routes to be used in a WSN. This approach enables efficient energy consumption during data communication, but with higher level energy consumption due to expanded search radius, which can be minimized using search time limit. The work also relates through mathematical equations, number of discovered routes, maximum hops, and search time to the considered search radius. The overall objective of this work is to enable faster and efficient channel communication between WSN nodes, through gradual cost effective search in neighborhoods. This is achieved by uncovering shorter and less number of routes within an acceptable time limits. The proposed and simulated approach presented in this work differ in terms of the gradual expansion of search and the equal increments in search radius compared to other used techniques. The presented work also adds a unique feature of allowing re-charging of low energy nodes using the already established routes connecting high energy nodes through the registration of weak nodes locations. A final general expression relates search radius to other WSN variables is also presented.

Pages: 993-998

DOI: 10.46300/9106.2022.16.121

International Journal of Circuits, Systems and Signal Processing, E-ISSN: 1998-4464, Volume 16, 2022, Art. #121

PDF DOI XML

Certification