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Abstract — In this paper, we consider 
pl -

periodical functions  pcs m  and  psn m , 

which are defined on a curve given by an equation 

1
p p

x y   on 
2R  as functions of its length. 

Considering  pcs m  and  psn m  as an 

independent functional system, we construct the 

theory similar to Fourier analysis with the proper 

weights. For these weights, we establish an analog of 

the Riemannian theorem. The adjoint 

representations are introduced and dual theory is 

developed. These Fourier representations can be 

used for approximation for the oscillation processes.   

 

Keywords— General periodic function, Fourier 

analysis, p-circle, adjoint, p-Laplacian, linear 

approximation, spectral theory, oscillation.  
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I. INTRODUCTION 

HE main motivation of this paper is to generalize the 

methods of the Fourier analysis for the measurable 

functions and methodology of the Fourier series, which 

presents a possibility to express a function as a sum of 

functions depending on frequency. Applying the Fourier 

series, we can represent a function as the sum of sines and 

cosines defined of the unit circle.  

The theoretical foundations of Fourier representation 

were developed in the fundamental works of classical 

functional analysis. For the most recent advances in the related 

theoretical studies and their applications, the interested reader 

is referred to the references below. 

The curve defined by the equation 1
p p

x y   

will be called a unit p-circle on a plane .R2
 In this paper, we 

 
 

construct a pair of 
pl -periodical functions defined on the p-

circle, which, in case 2p  ,  coincide with the elemental 

trigonometric functions. We introduced an approximation of 

arbitrary measurable function f  from 
pL  by the summation 

of the linear combination of the special pl -periodical 

functions  pcs m  and  psn m  with the proper 

weights, which are being obtained as integrals of f . For these 

weights, we establish an analog of the Riemannian theorem. 

Also, the adjoint theory has been developed.  We establish the 

representation of the functions 0,p

pf L l      in the form of 

the series as  
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and its adjoint  
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where , ,m ma a b
0

 are adjoint weights. 

Let us assume   and   is a pair of smooth 

functions of the real argument and such that the following two 

conditions  

      x x x     

     f g x g f x  
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are satisfied for all x R 1
. Then, the pair   and   can be 

chosen as  
p

     and  
q

     under the conditions 

, 1<
1

p
q p

p



. These properties of the exponential 

functions render us the following properties of the class pA .  

We can define the functional class pA  as the class of 

all weights such that  

 

p

p

B B
B

const
f f

mes B




 
  

 

1
 

holds for an arbitrary locally integrable function f  and any 

ball B .  

For any measure    d x x dx   for any 

pA , the maximal operator M  on 
nR  satisfies the 

following estimation  

p p

d d

Mf A f
 
 , 

and if T  is calderon zygmund operator under standard 

conditions, we have  

     

   

,

,

sup ,

p

dy x y

dx

p

p
dx

x K x y f y

C Mf x x










 


 
 

 



0
  

for any  f L 2
. 

Exploiting the functions  pcs   and  psn  , we 

define the p-sphere, this p-sphere has p-spherical symmetry but 

it cannot rotate on itself and its smoothness depends on p  as 

a parameter. The topology of this sphere is collapsing when 

p  approaches one or infinity. If 1p   there are four critical 

points, vertexes in which even first smoothness is absent, a 

situation is similar when p .     

The presented constructive theory provides the 

methodology for the researchers to develop a plethora of 

computational methods, which can be applied in different 

fields for obtaining approximations of the solution to many 

mathematical models of physical processes. 

II. DEFINITIONS AND NOTATIONS 

For  1,p  , on the real two-dimensional plane, 

let us consider a curve given by equation  

1
p p

x y  .                                  (1) 

If 2p   this curve is a two-dimensional circle, let us denote 

its length as l
2

 equals 2
2

. If   2p   this curve is not 

invariant under rotation and we denote its length as 
pl  that can 

be written in the form of the following integral  

     
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  
 

 ,              

(2) 

where 
p  is a real constant obtained from this integral as a 

parameter of  1p  .  

Let us assume that we want to measure the distance as 

p ppr x y   then the metric of such system is 

04

0

p

ik

p

g
p









 
 

  
 
 

4
2

2 4
2

 and (1) becomes equation of the 

unit circle in new metric. 

We consider a pair of C1
-smooth functions 

 pcs   and  psn   of the real argument   and  such 

that:  

    1 for all
p p

psn pcs R     1
.                        

(3) 

We define these functions as values of coordinates x  

and y , respectively, dependent on the length of the curve 
pl  

as a parameter, and taking  0 1pcs   by definition, so that  

  for allpcs x R   1
                    (4) 

  for allpsn y R   1
.                 (5) 

If 2p   we have    sinpsn    and 

   cospcs    for all R  1
. 

From the definition, we establish that functions 

 psn   and  pcs   are pl -periodical and such that 

 0 0
4

pl
psn pcs

 
  

 
,  0 1

4

pl
pcs psn

 
  

 
 and 

1

8 8 2

p p

p

l l
pcs psn

   
    

   
, and next pl -periodically. 

The smoothness of  psn   and  pcs   functions depends 

on p . 

Let us denote 
p pp x y    and 

, 0, pl        such that  
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 
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x pcs

y psn
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 




 

the parameters   and   can be taken as a new coordinate 

system similar to the polar coordinate system. Together with 

the system  ,  , we can consider the dual system as  

   

    .

pp

pp

x pcs pcs

y psn psn

   

   









22
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Let us assume that 
1

p
q

p



 then the last system 

defines a “circle” in the metric 
q qqr x y  , with  

pr   is a “circle” for any fixed value of  .   

Similar, for any given   we can consider a sphere n-

dimensional sphere  

...

, 0

1 2 3 2

1
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n

p p
n n p
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in the form    
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where ,..., 0, , 0, .
2

n n

p
p

l
l    

     
 

1 2 1
 

The adjoint sphere is defined by the following 

formula  

...

, 0

1 2 3 2

1

q q q q
n

q q
n n q
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


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and in a parametric form 
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where 
1

p
q

p



.  

The equation of p-torus in R3
 space takes the form  

    
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indeed, this equation can be presented in the form   

  ,

p

p p p ppx y A z B
 

    
 
 
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where  ,A B  are usual parameters. 

Next, we establish   

      for all
2 1pd

pcs psn psn R
d

   

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       (6)            
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2 1pd
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d

   




  .      (7)       

Assuming that the second derivatives exist, we can write   
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.         

(9) 

Also, there is an obvious integral identity   

          p p

psn pcs pcs psn d      .               

(10) 

 

III. APPROXIMATION 

Mappings  pcs   and  psn   are pl -periodic 

functions of the real argument ,   however, functions 
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 psn   and  pcs   are dependent also on p  as a 

parameter so that not only their values depend on p  but their 

period 
pl  also. Each value p  corresponds to certain functions 

such if 2p   then    sinpsn   , 

   cospcs    and 2 .l 2
       

Let us find a representation of the Lebesque real-

valued measurable function  f x  as a series with 

appropriate weights on the interval 0, pl     

      

    

    

    
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3 3 ...

,

0 1 1
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3 3

0

1 2

m m

m

f x a a pcs x b psn x

a pcs x b psn x

a pcs x b psn x

a a pcs mx b psn mx


   

 

   

  

    (11) 

where , , ,..., , ,...m ma a b a b0 1 1  are some real coefficients, 

which must be found.  

Integrating the identity (3) over the period pl  and 

taking into account (10), we obtain  

   
2

p pl l
p p pl

pcs d psn d     
0 0

.                            

Assume that function f  can be represented by (11) 

then we can (11) integrate over the interval 0, pl   , period of 

   pcs mx and psn mx , so we can find the first 

coefficient a
0

 as  

 
1
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p

a f x dx
l

 0

0

.                           (12) 

To obtain a value of the coefficient 
ma , we are 

multiplying the equality (11) by    
p

pcs nx pcs nx
2

  and 

integrating over the period 0, pl   , we have  

     
2

pl
p

m

p

a f x pcs mx pcs mx dx
l



 
2

0

                    

(13) 

since  

 
2
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p

p

pcs mx dx
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for any 0m  , and  

      0 for 
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p

pcs nx pcs mx pcs mx dx n m


 
2

0

, 

and for all m and n   

      0
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p

psn nx pcs mx pcs mx dx



2

0

. 

For finding coefficient mb  we multiply (11) by 

   
p

psn nx psn nx
2

 and integrating over 0, pl   , we 

obtain  

     
2
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p

m

p

b f x psn mx psn mx dx
l


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2
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(14) 
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2
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p

psn mx dx
l


0

, 

      0 n m
2

0
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p

psn nx psn mx psn mx dx


    

      0 m,  n
2

0

pl
p

pcs nx psn mx psn mx dx


  . 

Formulae (12) – (14) are similar to the formulae of the Fourier 

coefficients of the Hilbert space theory. 

Thus, we obtain the mapping of the functions 

0,p

pf L l      in the set of the infinite series according to 

the formula  

   
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2
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1 2 2

0

p

p

p

l

p

l
p

l
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l

f y pcs my pcs my pcs mx
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l
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

 



 
 

 
 
 
 
 








                    (15) 

 

Theorem (analog Riemannian theorem) 1.  

Assuming g  is an integrable function over an arbitrary 

interval  ,a b R 1
 then there are  

     lim 0

b
p

m
a

g x psn mx psn mx dx





2

                  

(16) 

and  

     lim 0

b
p

m
a

g x pcs mx pcs mx dx





2

             

(17) 

Proof.  Proving of (16) and (16) are similar to each 

other, so we are going to prove only (16).  We have the 

following estimations  
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Let us split the interval  ,a b  into n-parts by points  

... ...i i na x x x x x b       0 1 1  

so, we can split the integral into the sum of the integrals as   
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This equality can be transformed as follows  

     
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p
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g x
psn mx psn mx dx

g x

g x psn mx psn mx dx













 



 



  
  
 
 

   
 



 

 

 

Next, we estimate  

     

 
 

   

 
 

,
,...,

,
,...,

inf

2
inf .

i i

i i

b
p

a

i i
x x

i n

x x
i n

g x psn mx psn mx dx

g x g x x x

g x
m









 

 



     
 









1

1

2

1

1 1

1 1

 

Thus, for any 0  , we choose a partition in such a 

way that  

 
 

   
,

,...,

inf
2i i

i i
x x

i n

g x g x x x





 

    
 


1

1

1 1

, 

(it always can be done, maybe except on a set   of a very 

small measure that limits to zero, and on this set, there is an 

estimation 

        ,
p

g x psn mx psn mx dx g x dx


 

 
2

 

then we consider that set  ,a b   as an initial domain).  

Next, we take numbers m  large enough such that  

 
 

,
,...,

4
inf
i ix x

i n

m g x
  

 
11 1

, for such p , we have  

     
b

p

a

g x psn mx psn mx dx 



2

, 

thus, the theorem is proven.  

As a consequence of the theorem, we have that the 

coefficients  
ma  and 

mb  approach zero as m  approaches 

infinity. 

We also can formulate an adjoint variant of theorem 1    

Theorem (adjoint) 2.  Let  g  be an integrable 

function over an arbitrary interval  ,a b R 1
 then there are  

   lim 0

b

m
a

g x psn mx dx


                    

and  

   lim 0

b

m
a

g x pcs mx dx


 . 

IV. THE ADJOINT SERIES 

Let us consider a formal series 

   

   , ,...

,

2

0 2
1 2

p

m

p
m

m

a pcs mx pcs mx
a

b psn mx psn mx






 
 
 
 

      (18) 

we will call this series an adjoint of the series (11).  

Similarly to (11), we can represent the Lebesque 

measurable real-valued function 
p

f f
2

  on the interval 

0, pl    as  

   

   

   , ,...

,

2

0

2

2
1 2

p

p

m

p
m

m

f x f x a

a pcs mx pcs mx

b psn mx psn mx










 
 
 
 


 (19) 

where , , ,..., , ,...m ma a b a b
0 1 1  defined as follows   

   
1

pl
p

p

a f x f x dx
l



 
2

0

0

,                           

(20)       

     
2

pl
p

m

p

a f x f x pcs mx dx
l



 
2

0

                 

(21) 

and                   

     
2

pl
p

m

p

b f x f x psn mx dx
l



 
2

0

.                        

(22) 

Let us denote partial sums of the series (11) and (18) 

as  
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 

    
, ,...,

,0

1 2

n

m m

m n

S x

a a pcs mx b psn mx




 
       (23) 

and  

 

   

   , ,...,

0

2

2
1 2

n

p

m

p
m n

m

S x a

a pcs mx pcs mx

b psn mx psn mx






 

 
 
 
 


     (24) 

respectively. 

We calculated the integrals  

     

   

   
 

 

 

, ,...,

, ,...,2

2

0

2

0

0

2

1 2 0

0 0

1 2

p

p

p

l
p

n

l
p

l
p m

m n m

p

p m m m m

m n

f x f x S x dx

a f x f x dx

a pcs mx
f x f x dx

b psn mx

l
a a l a a b b















  
    

  
  

  





 



            

(25) 

and adjoint integrals   

     

 
   

   

 

, ,...,

, ,...,

,
2

0

0 0

2

2
1 2 0

0 0

1 2

p p

p

l l

n

p
l

m

p
m n

m

p

p m m m m

m n

f x S x dx a f x dx

a pcs mx pcs mx
f x dx

b psn mx psn mx

l
a a l a a b b








 

 
  
 
 

  

 

 



     

(26) 

and 

    0 0

0 0

p pl l

n nS x S x dx a a dx    

 

 

 

, ,...,

, ,...,

,
2

1 2 0

0 0

1 2

p
p

l
m m

p
m n

m m

p

p m m m m

m n

a a pcs mx
dx

b b psn mx

l
a a l a a b b





 
  
 
 

  

 



 (27) 

the coefficients 
pl   and 

2

pl
 can be made equal to one by 

renormalizations. 

Let us assume that function 
pf L   then 

p
p pf f L
 

2 1
 that the following integrals are correctly 

defined 

 

            

 
, ,...,

.
2

pl
p

n n

p p

p m m m mp
m n

f x S x f x f x S x dx

l
f a a l a a b b





  

 
    

 





2

0

0 0

1 2

    

(28) 

Now, let us take function  

    
, ,...,

m m

m n

f a a pcs mx b psn mx


  0

1 2

    (29) 

and multiplying (29) by 
p

f f
2

, we obtain  

 
, ,...,

.
2

p p

p m m m mp
m n

l
f a a l a a b b



 
   
 

0 0

1 2

 

So, we have obtained the next theorem.  

Theorem 3. The system of functions 
1

pl
, 

 2

p

psn m

l


 and 

 2

p

pcs m

l


  is closed in 

 0, p

pL l   . 

V. APPLICATION  pcs   AND  psn   FUNCTIONS TO 

DIFFERENTIAL SYSTEMS 

Since the functions  pcs   and  psn   have 

exponential derivatives, they can be applied to the solution of 

differential equations. On a real number line, let us consider a 

non-linear autonomic system of two equations  

      for all
pd

x y y R
d

   




  
2 1

 

      for all
pd

y x x R
d

   




 
2 1

, 

here 2 p .   

The general solution to this system can be written in 

the following form 

    ,x C pcs C R   
1

1

2 1

    ,y C psn C R   
1

1

1 2
. 
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