d6583d1b-a69f-4307-81ce-a275e6c3692e20220316041640583naun:naunmdt@crossref.orgMDT DepositInternational Journal of Pure Mathematics2313-057110.46300/91019http://www.naun.org/cms.action?id=698531220223122022910.46300/91019.2022.9https://npublications.com/journals/puremath/2022.phpParaconsistent da Costa Weakening of Intuitionistic Negation: What does it mean?ZoranMajkicISRST, 00195 Roma, ItalyIn this paper we consider the systems of weakening of intuitionistic negation logic mZ, introduced in [1], [2], which are developed in the spirit of da Costa's approach. We take a particular attention on the philosophical considerations of the paraconsistent mZ logic w.r.t. the constructive semantics of the intuitionistic logic, and we show that mZ is a subintuitionistic logic. Hence, we present the relationship between intuitionistic and paraconsistent subintuitionistic negation used in mZ. Then we present a significant number of examples for this subintuitionistic and paraconsistent mZ logics: Logic Programming with Fiting's fixpoint semantics for paraconsistent weakening of 3-valued Kleene's and 4-valued Belnap's logics. Moreover, we provide a canonical construction of infinitary-valued mZ logics and, in particular, the paraconsistent weakening of standard Zadeh's fuzzy logic and of the Godel-Dummet t-norm intermediate logics.3162022316202235489https://npublications.com/journals/puremath/2022/a182019-009(2022).pdf10.46300/91019.2022.9.9https://npublications.com/journals/puremath/2022/a182019-009(2022).pdf10.1215/00294527-2008-020Z.Majkic, “Weakening of intuitionistic negation for many-valued paraconsistent da Costa system,” Notre Dame Journal of Formal Logics, Volume 49, Issue 4, pp. 401–424, 2008. Z.Majkic, “Paraconsistent logic and weakening of intuitionistic negation,” International Journal of Intelligent Systems (JISYS), Issue 3, pp. 255–270, 2012. 10.1201/9780203910139-28J.Y.B´eziau, “Are paraconsistent negations negations ?,” In W.Carnielli (eds), Paraconsistency:the logical way to the inconsistnt, Marcel Dekker, New York, pp. 465–486, 2002. 10.1305/ndjfl/1099238445H.Aoyama, “LK, LJ, dual intuitionistic logic, and quantum logic,” Notre Dame Journal of Formal Logic 45 (4), pp. 193– 213, 2004. 10.1016/j.jal.2004.07.016A.Brunner and W.Carnielli, “Anti-intuitionism and paraconsistency,” Journal of Applied Logic 3 (1), pp. 161–184, 2005. 10.1007/978-1-4020-6324-4_1W.Carnielli, M.E.Coniglio, and J.Marcos, “Logics of Formal Inconsistency,” In: D. Gabbay and F. Guenthner, ed., Handbook of Philosophical Logic, Kluwer Academic Publishers, 2nd edition, vol 14, pp 1-93. Available at: http://wslc.math.ist.utl.pt/ftp/pub/MarcosJ/03-CCMlfi.pdf, 2006. 10.1305/ndjfl/1039886520I.Urbas, “Dual-intuitionistic logic,” Notre Dame Journal of Formal Logic 37(3), pp. 440–451, 1996. 10.1007/bf02121115C.Rauszer, “Applications of Kripke models to Hayting-Brouwer logic,” Studia Logica 34, pp. 61–71, 1977. K.Popper, “The logic of scientific discovery,” English translation of Logik der Forschung, Julius Springer Verlag, Vienna, 1936. 10.3166/jancl.18.79-125Z.Majkic, “Autoreferential semantics for many-valued modal logics,” Journal of Applied Non-Classical Logics (JANCL), Volume 18- No.1, pp. 79–125, 2008. 10.1305/ndjfl/1093891487N.C.A. da Costa, “On the theory of inconsistent formal systems,” Notre Dame Journal of Formal Logic, vol. 15, pp. 497– 510, 1974. 10.2307/2272137A.Anderson and N.Belnap, “Entailment: the logic of relevance and necessity,” Princeton University Press, Princeton, NY, 1975. D.Batens, “Dialectical dynamics within formal logics,” Logique et Analyse, 114, pp. 161–173, 1980. D.Batens, “A survey of inconsistency-adaptive logics,” Frontiers in Paraconsistent Logic, Proc. I World Congres on Paraconsistency, Ghent, pp. 49–73, 2000. S.Jaskowski, “A propositional calculus for inconsistent deductive systems,” Studia Sicietatis Scientiarum Torunensis, Sectio A, 5, pp. 57–71, 1948. 10.1201/9780203910139.pt1W.Carnielli and J.Marcos, “A Taxonomy of C-Systems,” in Paraconsistency - the Logical Way to the Inconsistent. Lecture Notes in Pure and Applied Mathematics, Vol. 228. Eds. W.A. Carnielli, M.E. Coniglio and I.M.L. D’Ottaviano. New York, Marcel Dekker, pp. 1–94, 2002. G.Birkhoff, “Lattice theory,” reprinted 1979, amer. Math. Soc. Colloquium Publications XXV, 1940. K.Doˇsen, “Negation as a modal operator,” Reports on Mathematical Logic, 20, pp. 15–28, 1986. A.Kolmogorov, “On the principle of tertium non datur,” Mat. Sbornik, 32 (traduced in van Heijenoort, From Frege to Go¨del, C.U.P., 414-437, 1967), 1925. A.Kolmogorov, “Zur dentung der intuitionistischen logik,” Math. Zeitschr, 35, pp. 58–65, 1932. 10.1007/978-3-642-65617-0_9A.Heyting, “Mathematische grundlagenforschung. Intuitionismus, beweistheorie,” Springer Verlag, Berlin, 1934. 10.1109/ismvl.1994.302194G.Escalada Imaz and F.Many´a, “The satisfiability problem for multiple-valued Horn formulae,” In Proc. International Symposium on Multiple-Valued Logics (ISMVL), Boston, IEEE Press, Los Alamitos, pp. 250–256, 1994. 10.1109/ismvl.1999.779724B.Beckert, R.Hanhle, and F.Many´a, “Transformations between signed and classical clause logic,” In Proc. 29th Int.Symposium on Multiple-Valued Logics, Freiburg,Germany, pp. 248–255, 1999. 10.1016/0304-3975(89)90126-6H.A.Blair and V.S.Subrahmanian, “Paraconsistent logic programming,” Theoretical Computer Science,68, pp. 135–154, 1989. 10.1007/bf00245460M.Kifer and E.L.Lozinskii, “A logic for reasoning with inconsistency,” Journal of Automated reasoning 9(2), pp. 179–215, 1992. 10.1016/0743-1066(92)90007-pM.Kifer and V.S.Subrahmanian, “Theory of generalized annotated logic programming and its applications,” Journal of Logic Programming 12(4), pp. 335–368, 1992. 10.1111/j.1467-8640.1988.tb00280.xM.Ginsberg, “Multivalued logics: A uniform approach to reasoning in artificial intelligence,” Computational Intelligence, vol.4, pp. 265–316, 1988. 10.1016/0743-1066(91)90014-gM.C.Fitting, “Bilattices and the semantics of logic programming,” Journal of Logic Programming,11, pp. 91–116, 1991. 10.1016/0743-1066(86)90003-8M.H.van Emden, “Quantitative deduction and its fixpoint theory,” Journal of Logic Programming,4,1, pp. 37–53, 1986. 10.1109/69.940732V.S.Laksmanan and N.Shiri, “A parametric approach to deductive databases with uncertainty,” IEEE Transactions on Knowledge and Data Engineering,13(4), pp. 554–570, 2001. 10.1109/ismvl.2005.22Z.Majkic, “Many-valued intuitionistic implication and inference closure in a bilattice based logic,” 35th International Symposium on Multiple-Valued Logic (ISMVL 2005), May 18-21, Calgary, Canada, 2005. Z.Majkic, “Truth and knowledge fixpoint semantics for manyvalued logic programming,” 19th Workshop on (Constraint) Logic Programming (W(C)LP 2005), February 21-25, Ulm, Germany, 2005. Z.Majkic, “A new representation theorem for many-valued modal logics,” arXiv: 1103.0248v1, 01 March, pp. 1–19, 2011. Z.Majkic, “Bilattices, intuitionism and truth-knowledge duality: Concepts and foundations,” Journal of Multiple-valued Logic & Soft Computing, Vol.14, No.6, pp. 525–564, 2008. 10.1007/978-94-010-1161-7_2N.D.Belnap, “A useful four-valued logic,” In J-M.Dunn and G.Epstein, editors, Modern Uses of Multiple-Valued Logic. D.Reidel, 1977. P.H´ajek, “Metamathematics of fuzzy logic,” Trends in Logic, 4, Kluwer Academic Publishers, Dodrecht, 1998. K.G¨odel, “Zum intuitionistischen aussagenkalk¨ul,” Anzieger Akademie der Wissenschaften Wien, 69, pp. 65–66, 1932. 10.2307/2964753M.Dummett, “A propositional calculus with denumerable matrix,” Journal of Symbolic Logic, 27, pp. 97–106, 1959. 10.1215/00294527-2010-032H.Omori and T.Waragai, “A note on Majkic’s systems,” Notre Dame Journal of Formal Logic, Vol 51, Number 4, pp. 503–506, 2010. Z.Majkic, “On paraconsistent weakening of intuitionistic negation,” arXiv: 1102.1935v1, 9 February, pp. 1–10, 2011.