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Abstract— This article presents the global sensitivity 

analysis of the serviceability limit state of a steel truss 

using Monte Carlo simulations. The focus is on the 

probabilistic assessment of deflection, with failure 

probability defined as the likelihood of exceeding the 

deflection limit. Deflection is computed using the beam 

finite element method. A surrogate model is introduced to 

reduce computational costs. By integrating the surrogate 

and original models, significant CPU cost reductions are 

achieved. Furthermore, classical Sobol sensitivity analysis 

is used to examine the model outputs and analyze the 

significance of member loading and stiffness on the 

deflection. This study advances the use of surrogate models 

in global sensitivity analysis, enhancing computational 

efficiency and the understanding of interactions between 

input variables in the reliability assessment of steel truss 

structures. 
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I. INTRODUCTION 
advancements in computational mechanics have 

significantly enhanced the field of structural mechanics, 
particularly in the context of stochastic analysis, [1]. The 
transition from purely analytical methods to computational 
techniques allows for a more robust and generalized approach 
to addressing uncertainties in structural systems. Probabilistic 
methods, such as Monte Carlo (MC) simulations, estimate the 
probability of failure or specific model outcomes. The finite 
element method (FEM) and MC simulations are crucial for 
accurately modeling the random behavior of steel structures 
and conducting reliability assessments, [2]. However, the 

 
 

integration of FEM into MC simulations is computationally 
demanding and requires numerous runs to estimate the failure 
probability. Therefore, more efficient computational strategies 
are necessary to manage the complexity and reduce the 
computational burden. 

The complexity of structural mechanics models presents 
challenges in propagating uncertainties using classical MC 
approaches, necessitating many evaluations of structural 
responses, see, e.g., [3], [4]. Various computational models in 
structural mechanics offer different levels of accuracy and 
computational cost for estimating outputs like stress state [5], 
resistance [6], [7], or crack propagation [8], [9], all of which 
can be optimized to reduce computing costs, [10]. 

This article explores stochastic modeling and the use of 
high-fidelity and low-fidelity models to reduce computational 
costs while maintaining accuracy, [11]. Surrogate models 
enable rapid evaluations for probabilistic assessments, proving 
advantageous in computationally demanding global sensitivity 
analysis (GSA) algorithms, where failure probability 
estimation is repeatedly performed in nested loops. However, 
while the use of surrogate models significantly reduces the 
computational burden, challenges arise due to the lack of 
reliable error measures and potential inaccuracies in 
representing limit-state functions, especially for models with 
discontinuities or sharp changes in behavior, [12], [13], [14], 
[15]. 

The article aims to conduct a comprehensive GSA of failure 
probability Pf using surrogate models and numerical 
simulation methods. The GSA of Pf employs the Goal-
Oriented Sensitivity Analysis approach with contrast functions, 
[16]. Previous studies [17], [18] explored the GSA of Pf, and 
[16] presented a generalized framework for sensitivity indices, 
linking them with Sobol sensitivity analysis, [19], [20]. This 
article uses the GSA of Pf based on entropy [21] as an 
alternative to [16]. 

Research on surrogate models has advanced [14], but not all 
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models suit every GSA. Fundamental surrogate models include 
Response Surface Methodology [22], Kriging [23], Support 
Vector Regression [24] and Artificial Neural Networks [25]. 
Surrogate model applications are well-documented, [26], [27], 
[28], [29], [30]. 

The aim of this study is to bridge the gap between 
computational efficiency and accuracy in reliability 
assessments of steel truss structures. By leveraging both high-
fidelity and low-fidelity models, the optimization of global 
sensitivity analysis methods and improvement in failure 
probability estimation are sought. The integration of surrogate 
models offers a promising solution to the computational 
demands specific to steel truss structures. In the next section, 
the specifics of reliability-oriented global sensitivity analysis, 
its methodologies, and applications in structural mechanics 
will be explored. 

II. RELIABILITY-ORIENTED GLOBAL SENSITIVITY ANALYSIS 
GSA methods identify the influence of individual input 

variables on system output values and highlight their 
importance in models and simulations, [31]. Consider a limit 
state function with random variables R (resistance) and A (load 
action): 

ARZ  . (1) 
 
Reliability analysis relies on probabilistic analysis, focusing 

on the frequency of failures Z<0. The probability of failure Pf 
is given as: 

 01  Zf EP . (2) 

 
Reliability-oriented GSA includes sensitivity measures 

reflecting the contribution of individual input variables to Pf 
variability, [21]. Sensitivity measures based on variance and 
entropy, effective in Pf  analysis [21], are used here. Sobol 
sensitivity analysis [19], [20] also assesses the contribution of 
individual variables to the total output variance V(Z). 
Variance-based GSA is derived from Sobol's GSA, where the 
variance of the binary function 1Z<0 is used instead of the 
model output R, A or Z. 
   ffZ PPV  11 0

. (3) 

 
This measure, introduced in [17] and [18], is part of the 

contrast-based sensitivity measures described in [16]. The 
second measure uses entropy: 
       ffffZ PPPPH  1ln1ln1 0

. (4) 

 
Both measures indicate the degree of uncertainty in relation 

to Pf. The dome-shaped entropy function in Equation (4) 
approximates the dome-shaped variance function described in 
Equation (3). 

Variance and entropy measures provide insights into input 
variables' influence on Pf. However, these measures may not 
be directly comparable. Sensitivity indices derived from the 
decomposition of the total uncertainty in Pf offer a 

comparative overview of variable importance, [21]. The first-
order reliability-oriented sensitivity index based on sensitivity 
measure SM(Pf)={V(1Z<0), H(1Z<0)} is: 

    
 f

iff
i

PSM

XPSMEPSM
S


 . (5) 

 
The second-order reliability-oriented sensitivity index is:  
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The third-order reliability-oriented sensitivity index is: 
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Higher-order sensitivity indices reveal interactions and non-

linear effects between variables, providing a comprehensive 
understanding of each variable's relative importance on Z or 
Pf. These indices ensure the sum of all sensitivity indices 
equals one, reflecting the total contribution of input variables 
to reliability output. 

1... ...123  
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ijk
i ij

ij
i

i CCCC . (8) 

 
This concept of sensitivity analysis ensures a thorough 

assessment of the overall variability or uncertainty of 
reliability. The results of GSA enhance the understanding of 
interactions among input variables and non-linear effects 
influencing structural reliability. This allows for more 
informed decision-making based on the probability of failure, 
[32], [33], [34], [35]. 

III. ENGINEERING CASE STUDY 
This study focuses on a steel truss structure. The members 

are seamless steel tubes with an outer diameter of 88.9 mm, 
per EN 10255. The top chord uses CHS 88.9 x 10 circular 
hollow profiles, and other members use CHS 88.9 x 8. The 
wall thicknesses are 10 mm for the top chord and 8 mm for the 
others. The material is steel grade 355 MPa. 

A. The Finite Element Model 

The main outputs are midspan deflection w and horizontal 
deflection Δ. These deflections are computed using the beam 
finite element method. Deformation depends linearly on the 
load, assuming geometric and material linearity. The model is 
symmetric in geometry, material, and load. Thus, w and Δ can 
be computed using left-right symmetry, simplifying the model 
to half of the truss (Fig. 1). 

Steel grade S355 is used for all members. Dimensioning of 
cross-sections is based on the assumption that the three bars in 
the top chord are under compression and the two bars in the 
bottom chord are in tension (Fig. 1). The maximum axial 
tensile stress of 354.7 MPa, which is close to the yield strength 
of 355 MPa, occurs in bar five. Thus, 128 kN is the design 
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load-carrying capacity per Eurocode 3, [36], (EC3) and EN 
1990 [37] standards. 

 

 
Fig. 1 Beam computational model of steel truss structure. 

 
Truss deformations are random outputs of the stochastic 

model, depending on the variability of load and stiffness. 
Statistical characteristics of load and material parameters are 
derived from experimental research [38] and design values 
from standards, [36], [37]. The Rk=128 kN design load 
includes a permanent load action of 28 kN and a variable load 
action of 100 kN. According to [36], the design load action is: 

kQkG
M

k QG
R

 


, (9) 

 
where M=1.0 is the material partial safety factor and 

G=1.35 and Q=1.5 are the partial safety factors for 
characteristic permanent load action Gk and characteristic 
long-term variable load action Qk [37], [39]. The characteristic 
values calculated according to the static model in [37], [39] 
are Gk=20.74 kN and Qk=66.67 kN. 

B. The input random quantities 

The statistical characteristics of permanent and 
characteristic load actions can be derived from the concept 
described in [37], [39]. The permanent load follows a 
Gaussian distribution with a mean Gk and a coefficient of 
variation of 0.1, [40]. The variable load follows a Gumbel-max 
distribution with a mean of 0.6·Qk and a standard deviation 
of 0.21·Qk [37], [39], (Table I). 

Cross-sectional stiffnesses are additional input random 
variables, represented by the product of the cross-sectional 
area A and Young’s modulus E. The top bars have A1 and E1, 
bottom bars A2 and E2, and diagonal/vertical bars A3 and E3, 
(Fig. 1). Young’s modulus E has a mean of 210 GPa and a 
standard deviation of 10 GPa, [41]. Statistical characteristics 
of A are derived from experimental research [38]: 
μA1=2480 mm2, σA1=155 mm2, μA2=μA3=2030 mm2, and 
σA2=σA3=127 mm2. The lengths of the bars are considered to be 
deterministic values without any variability. 

To simplify the stochastic analysis, A and E are replaced by 
a single random variable k=E·A. This reduction in 
dimensionality allows all variables to be considered with the 
same unit, Newton, making the study more transparent. This 

dimensional reduction is valid because A and E always appear 
as a product. The mean μk, standard deviation σk, and skewness 
ak of k are calculated as: 

AEk   . (10) 
 

222222
AEAEAEk   . (11) 

 
22

3
6 AE

EA

EA
ka 




 . (12) 

 
The product of the cross-sectional area and Young’s 

modulus can be accurately approximated using a three-
parameter lognormal distribution, as demonstrated in [39]. All 
input variables, X={G, Q, k1, k2, k3}, are listed in Table I.  

 
TABLE I. INPUT RANDOM QUANTITIES 

Symbol Density Mean 
value 

St. 
deviation 

St. 
skewness 

k1 

k2 

k3 

G 

Q 

Lognormal 
Lognormal 
Lognormal 

Gauss 
Gumbel-max 

520.8 MN 
426.3 MN 
426.3 MN 

28 kN 
60 kN 

40.95 MN 
33.54 MN 
33.54 MN 

2.8 kN 
21 kN 

0.11 
0.11 
0.11 

0 
1.14 

C. The input random quantities 

The reliability condition requires that the midspan 
deflection w must be less than or equal to 1/250 of the span, 
where the tolerance limit of 1/250 is mentioned in EC3. For a 
truss with a span of 12 m, the deflection w must not exceed 48 
mm. Failure occurs if the deflection w is higher than 48 mm. 
The failure probability is analyzed using a binary random 
variable 1w48mm, (Fig. 2). 

 

 
Fig. 2 The Bernoulli trial of failure (1) vs success (0). 

 
The failure probability can be computed as the mean value 

from the binary random variable 1w48mm. 
 mm481  wf EP . (13) 

 
The midspan deflection w(X) is computed using the beam 

finite element method for the input random vector of the FE 
model, X, which consists of the five random variables listed in 
Table I. The statistical analysis of the midspan deflection 
based on the FE model is shown in Fig. 3. 
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Fig. 3 Steel truss structure computational model. 

 
The distribution of the random realizations of w can be 

successfully approximated using a three-parameter lognormal 
pdf. In each MC run, the output is a failure (1) or success (0). 
Random realizations representing failure are deflections higher 
than 48 mm. Such deflections are less frequent and are located 
in the probability distribution at the tail of the pdf, see the red 
realizations in Fig. 3. The failure probability is defined as the 
probability Pf = P[w(X)48 mm]. The MC method can be used 
to calculate the failure probability as: 

 




K

k
xwf kK

P
1

mm481
1 . (14) 

 
The failure probability Pf is computed using K=50 000 runs 

of the MC method with the inputs from Table I. The numerical 
estimate obtained in this manner is Pf = 0.01. 

D. Surrogate model 

Sensitivity analysis in structural engineering often requires 
extensive computational resources, especially with Monte 
Carlo simulations. Implementing surrogate models reduces the 
computational load while maintaining accuracy in estimating 
failure probabilities Pf. 

Estimating Pf in the previous chapter required numerous 
MC simulations for accuracy. GSA based solely on the FEM 
model would be very demanding for repeated estimations of 
Pf. A higher number of MC runs is necessary for GSA 
compared to a single Pf estimate. To address this, a surrogate 
model is implemented to speed up Pf estimation while 
preserving accuracy. This involves quickly identifying runs 
where deflection w is reliably below the limit value, thus 
avoiding detailed FEM calculations. The FEM is used only for 
deformations exceeding the limit value (failure) or near the 
boundary between failure and success. Smaller deformations 
are calculated using the surrogate model. For rare failures, a 
more accurate FE model is used with less CPU load in all 
simulations, making the surrogate model useful for estimating 
global sensitivity indices by enabling numerous simulation 
runs. 

The output of the FE model presented here is the midspan 
deflection w. This deflection can be approximated by the 
following function: 

 

  











3

3

2

2

1

1~
k

c

k

c

k

c
FXw . (15) 

 
In Equation (15), the approximated deformation is directly 

proportional to the load F and inversely proportional to the 
stiffnesses of the bars k1, k2, and k3, see Table I. Parameters c1, 
c2, and c3 are computed for unit load F =1 using k01 = 210 GPa 
· 2480 mm2 = 520.8 MN and k02 = k03 = 210 GPa · 2030 mm2 
= 426.3 MN, where k01, k02, and k03 are the median of the 
cross-sectional stiffnesses, which are calculated using the 
medians of E and A. The parameters c1, c2, and c3 are 
approximately estimated in the area of failure when the 
deflection exceeds 48 mm, which occurs when the stiffnesses 
of the bars k01, k02, and k03 are reduced by a coefficient of 
approximately 0.83. Parameters c1, c2, and c3 can be calculated 
from a system of three linear equations using permutation 
without repetition from the set {0.82, 0.83, 0.84}. Three of the 
six permutations are chosen such that each parameter c1, c2, 
and c3 is divided by a different stiffness in each equation, see 
Equation (16), Equation (17), and Equation (18). 

16
3

6
2

6
1

103.42684.0103.42683.0108.52082.0
1 FEMw

ccc



















 (16) 
 

26
3

6
2

6
1

103.42682.0103.42684.0108.52083.0
1 FEMw

ccc



















 (17) 
 

36
3

6
2

6
1

103.42683.0103.42682.0108.52084.0
1 FEMw

ccc



















 (18) 
 
The right-hand sides are the midspan deformations 

calculated using FEM. The matrix of the system of three 
equations is symmetric, and its determinant is positive. The 
values of parameters c1 = 40.562, c2 = 67.178, and c3 = 30.397 
are obtained by solving this system of equations. The final 
surrogate model for load action F = G + Q can be expressed 
as: 

  











321

3974.301778.675619.40~
kkk

FXw . (19) 

 
In Equation (19), the input random variables G, Q, k1, k2, 

and k3 are introduced in base units of Newton, and the output 
deflection is in meters. The statistical characteristics of the 
input random variables for which the surrogate model is 
created are defined in Table I and need to be converted to base 
units before being used in Equation (19). 

E. The function of serviceability limit state 

In structural engineering, ensuring reliability in design 
involves verifying that deflections remain within acceptable 
limits. For this study, the design is considered reliable if the 
midspan deflection w is less than 0.048 m. By combining the 
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finite element method (FEM) and surrogate models, the 
serviceability limit state can be effectively evaluated, 
optimizing computational efficiency while maintaining 
accuracy. 

 
   

   








m048.0~01.1for,~48.0

m048.0~01.1for,48.0

XX

XX
X

ww

ww
g . (20) 

 
The parameter 1.01 introduced in Equation (20) is 

numerically (heuristically) set so that the FEM is used for all 
points of the input space in the failure region, especially near 
the failure-success boundary.  

Fig. 4 shows the grey area that forms the boundary between 
the region of failure and success. Failure occurs near zero, 
which is highlighted in red behind the area. Approaching zero 
means less stiffness and, thus, more deflection. 

 

 
Fig. 4 The boundary between the region of failure and success. 

 
The occurrence of failure is rare; thus, most runs do not 

need to be evaluated using the FEM. The closer we are to the 
green point in Fig. 4, the less we need the FE model. The 
accuracy of the surrogate model was numerically verified 
using 50,000 LHS runs across the spectrum of random 
realizations, (Fig. 5).  

 

 
Fig. 5 Comparison of the FEM and surrogate model. 

It can be observed that the deviations of the surrogate model 

from the FE model are minimal, (Fig. 5). The parameter 1.01 
was heuristically set and may vary depending on the type of 
the surrogate model. 

 

F. The global sensitivity analysis results 

Understanding the impact of input variables on the 
reliability of structural designs is crucial for effective 
engineering decisions. GSA provides a comprehensive method 
to assess how different input variables influence the failure 
probability of Pf and other model outputs. 

GSA of Pf is based on the variance decomposition of the 
Bernoulli distribution V(1w 48) = Pf·(1-Pf), [17], [18]. 

The numerical estimation of the sensitivity index Si in 
Equation (5) is performed using the double-nested-loop 
algorithm. Using LHS runs, the outer loop is repeated 5000 
times to estimate the arithmetic mean E(·) of the samples. The 
inter-loop result is the estimate of the conditional Pf. In the 
inner loop, each sample SM(Pf) has the estimation of Pf 
realized using 20 million runs. Although a large number of 
runs have been used and MC could have been employed, the 
Latin Hypercube Sampling (LHS) [42], [43] method is 
preferred due to the slightly better results in the double-loop 
simulations. The calculation of the sensitivity index Sij from 
Equation (6) and other indices is performed analogously. The 
conditional estimates of Pf are extremely computationally 
demanding, so they were treated using the surrogate model in 
Equation (19). 

Fig. 6 shows the results of the GSA of Pf based on the 
sensitivity measure from Equation (3). Fig. 7 shows the results 
of the GSA of Pf based on the sensitivity measure from 
Equation (4). In both cases, the variation load action Q has a 
dominant influence on Pf, (Table I). The second significant 
effect is the interaction effect between Q and the stiffness of 
the bottom chord k2. However, this is a minor effect in 
comparison to the first-order effect due to Q. On the contrary, 
the influences of G, k1, k2, and k3 on Pf are negligible in both 
main and interaction effects. 

 

 
Fig. 6 The results of GSA based on the contrast sensitivity measure 
from Equation (3). 
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Fig. 7 The results of GSA based on the entropy sensitivity measure 
from Equation (4). 

 
The computational speed was measured on a single-core 

CPU Intel Core i7-3740QM with a processor frequency from 
2.70 GHz to 3.70 GHz (boost). The estimated time required to 
calculate one index using the surrogate model is approximately 
one hour, whereas using the original FE model would take 
about 40 hours. By comparing these two measures, it can be 
stated that the surrogate model accelerates the estimation of 
sensitivity indices approximately forty times. The time 
consumption is the same when using Equation (3) or Equation 
(4). The calculation of all 32 indices would be 32 times more 
demanding, but the estimation of each index could be 
performed parallelly. This would make it possible to run the 
calculation of individual indices in parallel. Multiple cores or 
processors could be used to compute multiple indices 
simultaneously. This would significantly speed up the overall 
calculation of all indices. 

The classical Sobol SA is added for comparison. Sobol SA 
analyses the influence of input random variables on the model 
output rather than specifically focusing on Pf. The midspan 
deflection w is considered as the model output. Sobol SA 
analyses the influence of input variables k1, k2, k3, G, and Q 
(model inputs) on the midspan deflection w. The calculation is 
based on the double-nested-loop algorithm. Using the LHS 
runs, the outer loop is repeated 5000 times to estimate the 
arithmetic mean E(·) of the variance samples V(w|Xi). Each 
sample V(w|Xi) is estimated by the inner loop algorithm using 
5000 samples. Random sampling was generated using the LHS 
method. 

 
Fig. 8 The results of Sobol SA using random quantities k1, k2, k3, G, 
Q2. 

By including all five input random variables in Sobol 
sensitivity analysis, the dominant influence of the input 
variable Q was confirmed, (Fig. 8). The numerical estimates of 
the sensitivity indices in Fig. 8 are S1= 0.007 (k1), S2= 0.027 
(k2), S3= 0.006 (k3), S4= 0.017 (G), with dominant influence of 
S5=0.943 (Q). Although Fig. 8 offers an insight into the 
influence of all input variables, the influence of stiffnesses k1, 
k2, and k3 is overshadowed by the dominant influence of Q. 
Therefore, the results are supplemented by another study, 
where the loads G and Q are introduced as deterministic 
quantities, (Fig. 9). 

 

 
Fig. 9 The result of Sobol SA using only random quantities k1, k2 and 
k3. 

 
The results shown in Fig. 9 show that the variability of the 

cross-sectional stiffness of the bottom chord k2 has a dominant 
effect on the midspan deflection w. The stiffnesses k1 and k3 
have approximately the same influence, which is small but may 
be important in the sum. In terms of influence on the midspan 
deflection w, the stiffnesses of the diagonal and vertical 
members k3 are as significant as the stiffness of the top chord. 
Fig. 9 shows that higher-order interaction effects are minimal, 
which is the usual result of Sobol sensitivity analysis of model 
outputs in structural mechanics, [44]. 

The top bars are under compression and dimensioned to 
take into account buckling. Although the top bars have a larger 
area than the other bars, the variation coefficients of all 
stiffnesses k1, k2 and k3 are the same. The Sobol sensitivity 
analysis presented here shows that the influence of the 
stiffnesses of the diagonal and vertical members can be 
comparable to those of the top chord members. 

The sensitivity indices shown in Fig. 6 and Fig. 7 can be 
converted into total indices, which is shown in Fig. 10. The 
total index STi offers a more transparent understanding of the 
influence of Xi, taking into account all potential interaction 
effects between Xi and the remaining variables. Therefore, the 
total index is highly valued for a comprehensive comparison of 
the influence of all input variables, especially when multiple 
input variables influence the observed output, [31]. The total 
sensitivity indices oriented to reliability-based sensitivity 
measure SM(Pf) are derived from Sobol's method and are 
defined and explained in [21]. Fig. 10 shows two types of total 
sensitivity indices. "Contrast" refers to the total sensitivity 
indices computed using Equation (3), while "Entropy" denotes 
the total sensitivity indices computed using Equation (4). 
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Fig. 10 The result of Sobol SA using only random quantities k1, 
k2 and k3. 

 
The sensitivity analysis results in Fig. 10, which present the 

total indices, answer the question of which input random 
variables can be neglected to simplify the stochastic 
computational model. Based on the above-mentioned results, 
input random variables k1, k2 or G, k1, k2 can be neglected,  
(Fig. 10). On the contrary, it can be recommended to model 
the input random variable Q as accurately as possible, as its 
variability significantly influences the deflection. 

IV. CONCLUSION 
A surrogate model was developed to calculate deflection in 

a truss structure and integrated with an original finite element 
model in the presented study. This surrogate, especially near 
the failure boundary, captured subtle changes in failure 
probability due to fixed input variables or their combinations. 
The surrogate model proved essential for real-time sensitivity 
analysis, significantly reducing computational time compared 
to the iterative runs of the original model. It was effectively 
applied in the global sensitivity analysis (GSA), with a focus 
on the reliability assessment of the steel truss's serviceability 
limit state, where failure is defined as excessive deflection. 

The GSA revealed that failure probability is highly sensitive 
to variations in long-term variable load action, showing 
significant random variability, while the dead load had a 
negligible effect. The study also identified significant and less 
significant members based on stiffness, with the variability of 
stiffness in lower members substantially affecting failure 
probability. Classical Sobol sensitivity analysis validated these 
results, indicating that deflection is primarily influenced by 
load action variations. Another variant of GSA isolated bar 
stiffness effects, showing that bottom chord stiffness had the 
most significant impact on deflection, with the top chord, 
diagonal, and vertical members showing a smaller but notable 
influence. 

Integration of surrogate models with GSA methods proved 
effective in structural reliability assessment, significantly 
reducing the time required to estimate sensitivity indices. The 
study highlights the potential for further development of 
surrogate models to optimize stochastic computational models 
in reliability and sensitivity analysis. The results of the GSA 

identified influential input variables that should be prioritized 
when determining their statistical characteristics, even at the 
expense of less influential input variables. Refining the 
statistical characteristics of these influential variables will 
improve the accuracy of probabilistic reliability analysis and 
enhance the understanding of structural reliability under 
probabilistic conditions. 
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