
 

 

 

Abstract— The novelty of this study is a variational 

approach for estimating the temperature distribution in 

the body of a rectangular parallelepiped shape when a 

heat flow enters one of the faces of a rectangular 

parallelepiped, and heat exchange with the environment 

occurs on the opposite side. At the same time, options are 

considered when the remaining faces of a rectangular 

parallelepiped are thermally insulated or vice versa. My 

contribution of this work is that we calculated the laws of 

temperature distribution when dividing a rectangular 

parallelepiped into a different number of elements. It is 

shown that acceptable accuracy is achieved already by 

dividing the sides of a rectangular parallelepiped into 

three or 4 parts. In addition, a comparison of the 

temperature distribution law for a rectangular 

parallelepiped and a rod close in size,  

other things being equal, was carried out. Their slight 

difference is shown. 

Keywords—Variational approach thermal conductivity, 

heat flow, rectangular parallelepiped, heat exchange.  

I. INTRODUCTION 

n [1], general problems on the use of the finite element 

method for determining the thermo-mechanical 

characteristics of various solids are considered. 

In [2], a computational algorithm and a method for 

determining the temperature field along the length of a rod 

with a limited length and variable cross-section are proposed.  

In [3], an energy method is considered for determining the 

law of temperature distribution, three components of 

deformation and stress, provided that both ends of a rod of 

 

 
 

variable cross-section are rigidly fixed.  

In [4], the stationary solution of thermal conductivity 

problems with low convergence is shown for a rectangle with 

specified zero temperatures, with the exception of one surface 

with an abrupt temperature change.  

In [5], exact nonstationary solutions of thermal conductivity 

in two-dimensional rectangles heated at the boundary are 

considered. The solution of the standard method of separation 

of variables consists of two parts: stationary and additional 

transient.  

In [6], the basics of calculating heat transfer through a layer 

of matter are described. Solutions of the problems of 

determining heat flows through a layer of matter with different 

conditions at the boundaries of the layer and different 

properties of the substance of the layer are given.   

[7] is devoted to numerical methods for solving problems of 

unsteady thermal conductivity taking into account the 

relaxation of the heat flow. A mathematical model based on a 

system of hyperbolic heat conduction equations is presented 

for calculating the temperature field in a two-layer infinitely 

extended plate with the conditions of conjugation of an ideal 

contact.  

In [8], the equation of thermal conductivity of an eccentric 

spherical ring with an inner surface maintained at a constant 

temperature and an outer surface subject to convection is 

analytically solved.  

In [9], one computational approach to the calculation of the 

heat equation is presented, which differs in the case of three-

dimensional oblique unstructured grids by the compactness of 

the grid pattern and the unconditional stability of the numerical 

algorithm.  

In [10], solutions to problems of nonstationary thermal 

conductivity (semi-bounded body, unbounded plate, solid 

cylinder, ball, hollow cylinder) are considered by several 
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methods (separation of variables, operational, integral Fourier 

and Hankel transformations). The solutions are given in 

generalized variables using the method of similarity theory, 

they are illustrated by numerous graphs and tables. 

Mathematical steps leading to the calculation of the 

temperature field in multidimensional multilayer bodies are 

described in [11] and numerical results for two-layer bodies 

are presented. Representations include boundary conditions of 

the first, second and third kind. An efficient computational 

scheme for calculating eigenvalues is discussed and numerical 

results are given.  

In [12], the temperature distribution under the influence of a 

heat flow from one side of a parallelepiped and during heat 

exchange with the opposite side is considered using an 

approach where the solution of the problem is expressed as a 

solution of one-dimensional problems and multiple Fourier 

series or their generalization are used  

In [13], a representative stationary problem of thermal 

conductivity in rectangular bodies with uniformly distributed 

heat generation is analytically investigated. A simple and 

accurate model is proposed that allows for the first time to 

predict the dimensionless parameter of the shape factor. The 

model is very concise and convenient for fast approximation to 

the real world, and also provides acceptable accuracy for 

engineering practice. 

II.  PROBLEM STATEMENT 

Consider a solid body in the form of a rectangular 

parallelepiped (Figure 1). The origin of the coordinates is 

located in the lower left corner of a rectangular parallelepiped, 

as shown in the figure. The nodal points are numbered starting 

from the lower-left near corner (node 0). The dimensions of a 

rectangular parallelepiped along the x, y and z axes are 

considered equal to a, b and c, respectively. Convective heat 

exchange occurs on the face (0, 1, 2, 3), and a heat flow is 

applied to the face (4, 5, 6, 7). 

 
Figure 1. Diagram of the solid under study in the form of a 

rectangular parallelepiped 

 

The task is to find the law of temperature distribution at any 

point of a solid body in the form of a rectangular 

parallelepiped. 

  

Mathematically, the stationary problem is reduced to solving 

the heat equation: 

 

      
2 2 2

2 2 2
K ( ) Kyy( ) Kzz( ) 0,

d T d T d T
xx

dx dy dz
                    (1) 

 

- under restrictions: 

       of the second kind 

 

            
2 2 2

2 2 2
K ( ) Kyy( ) Kzz( ) 0,

d T d T d T
xx

dx dy dz
    on 1S ,            (2) 

 

      - the third kind 

 

     

2

(K Kyy Kzz ) (T ) 0,
s

dT dT dT
xx h Tat

dx dy dz
    

on 2S .             (3) 

Equation (2) is the boundary condition for heat flow, and 

equation (3) is for convective heat transfer.  

The task is to find a solution to equation (1) under 

constraints (2) and (3) using a variational approach. 

 

where T  – temperature, 
0C ;  

      q  – heat flow, 
0C ;  

, ,xx yy zzK K K – thermal conductivity coefficients in 

coordinate directions x, y and z, 
0 ;

kBT
C

m
  

      h  – heat transfer coefficient,  
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1S  – the surface on which the heat flow enters, m2; 

2S  – the surface where heat exchange occurs, m2;  

     atT  – ambient temperature, 
0C .  

III. RESEARCH METHODOLOGY 

To achieve this goal, the following tasks are solved: 

1. Discretization of a rectangular parallelepiped along the x, y 

and z axes and construction of approximating spline functions 

for temperature within the length of each discrete element. 

2. Formation of a functional of total thermal energy for all 

sampling elements, taking into account the boundary 

conditions when a heat flow enters one of the faces of a 

rectangular parallelepiped, and heat exchange with the 

environment occurs on the opposite side. And also, 
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consideration of cases when the remaining faces of a 

rectangular parallelepiped are thermally insulated and vice 

versa. 

3. Minimization of the functional of the total thermal energy 

by the temperatures of the nodal points of a rectangular 

parallelepiped and obtaining resolving systems of linear 

algebraic equations to determine them. 

4. Solving resolving systems of linear algebraic equations and 

obtaining the temperature value at the nodal points of a 

rectangular parallelepiped.  

5. Determination of the temperature distribution law in a 

rectangular parallelepiped in accordance with the proposed 

temperature approximation formula. 

6. Development of programs in Python for the formation of 

general functionality, solving resolving systems of linear 

equations and plotting the law of temperature distribution in a 

rectangular parallelepiped.  

A variational approach is used to solve the problem [1]. 

According to this approach, the solution of the problem under 

consideration is equivalent to minimizing the temperature 

functional at the nodal points: 

 

2 2 21
[K ( ) Kyy( ) Kzz( ) ]

2
V

dT dT dT
J xx dv

dx dy dz
     

1 2

2

1 2 3 4 5qdS (T T )
2

at

S S

h
dS J J J J J            (5) 

where V- the volume of the body in question. 

For a rectangular parallelepiped (Figure 1), formula (7) has the 

form: 
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1
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               (6) 

 

When the side faces of a rectangular parallelepiped are not 

thermally insulated, the following terms are added to the 

functional J, taking into account heat transfer: 
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where  5 6 7 8, , ,J J J J  – characterize the heat exchange on the 

faces (0, 1, 4, 5), (2, 3, 6, 7), (0, 2, 4, 6), (1, 3, 5, 7) a 

rectangular parallelepiped, respectively. 

In this case, the total functional is 
8

1

i

i

J J


 .  

To minimize the functional J, the temperature T(x, y, z) is 

approximated by a third-order polynomial: 

 

    
0 1 2 3 4 5 6 7(x, y,z)T x y z xy xz yz xyz                      (8) 

 

Suppose that the temperature values are set at the nodal points 

of a rectangular parallelepiped: 
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                          (9) 

 

Substituting expression (8) into the left part of these equations, 

we obtain a system of linear equations with respect to 0 7,  : 

 

0 1 0 2 0 3 0 4 0 0 5 0 0 6 0 0 7 0 0 0 0

0 1 1 2 1 3 1 4 1 1 5 1 1 6 1 1 7 1 1 1 1

0 1 2 2 2 3 2 4 2 2 5 2 2 6 2 2 7 2 2 2 2

0 1 3 2 3 3 3 4 3 3 5 3 3 6 3 3 7 3 3 3

,

,

,

x y z x y x z y z x y z T

x y z x y x z y z x y z T

x y z x y x z y z x y z T

x y z x y x z y z x y z

       

       

       

       

       

       

       

       3

0 1 4 2 4 3 4 4 4 4 5 4 4 6 4 4 7 4 4 4 4

0 1 5 2 5 3 5 4 5 5 5 5 5 6 5 5 7 5 5 5 5

0 1 6 2 6 3 6 4 6 6 5 6 6 6 6 6 7 6 6 6 6

0 1 7 2 7 3 7 4 7 7 5 7 7 6 7 7 7 7

,

,

,

,

T

x y z x y x z y z x y z T

x y z x y x z y z x y z T

x y z x y x z y z x y z T

x y z x y x z y z x
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(10) 

 

There is a solution to this system: 

            (11) 

                                        

After substituting these values into formula (5) and bringing 

similar terms, we get: 

0 0 1 1

2 2 3 3 4

4 5 5 6 6 7 7

(x, y, z) (x, y, z)*T (x, y, z)*T

(x, y, z)*T (x, y, z)*T (x, y, z)*

T (x, y, z)*T (x, y, z)*T (x, y, z)*T

T  

  

  

  

 

  

     (12) 

   ;    ;     ,a x a b x b c x c          
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Where 

0 (x, y,z) 1 ;
z y yz x xz xy xyz

c b bc a ac ab abc
          

1(x, y,z) ;
x xz xy xyz
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2 (x, y,z) ;
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b bc ab abc
                    (13) 
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Differentiating function (8) by variables x, y and z we get  
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Expression J after substitution of T and ( , , )
dT dT dT

dx dy dz
it is 

calculated using the sympy module of the Python language, the 

expression of which is not given here because of the bulkiness.   

To minimize the functional J , we differentiate it by 

variables 
0 7,T T  and we equate it to zero. As a result , we 

obtain a system of linear equations with respect to variables 

0 7,T T , which, for example, for the thermally insulated case, 

when we consider a cube with the length of the sides a, has the 

form: 
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Here, it should be noted that the developed Python program 

allows you to obtain a system of linear equations for any 

number of partitions of the sides of a rectangular 

parallelepiped. 

The solution of the resulting system of equations makes it 

possible to determine the temperatures at the nodal points of a 

rectangular parallelepiped. Substituting these values in (8), we 

obtain the law of temperature distribution at any point of a 

rectangular parallelepiped. 

All these operations were performed using the sympy module 

of the Python language. 

IV. PRACTICAL IMPLEMENTATION 

For the practical implementation of the proposed approach, a 

Python program was developed. As an example, a cube was 

selected (Figure 2) with the following initial data: 

0.015 ,  0.015 ,  0.015 ,a m b m c m  

2 0
75000 ,T 40 ,q 500xx at

BT kBT
K C

m C m C
      

 
Figure 2. A solid body in the shape of a cube, consisting of a 

single element 

 

If we denote the number of partitions of a rectangular 

parallelepiped into elements along the x, y and z axes as mx, 

my and mz, respectively, then for a cube we have 

mx=my=mz=m. 

Let's introduce arrays of temperatures T1[0,8], T2[0,27], 

T3[0,63], T4[0,124], corresponding to the nodal points of the 

cube for the number partitions m=1,2,3,4, accordingly. The 

temperature values at the nodal points of the cube for the 

thermally insulated case turned out to be equal 

1) when m =1 (Figure 2): 

T1[0,3]=90, T1[4,7]=90; 

2) when m =2 (Figure 3): 

T2[0,8]=90, T2[9,17]=95, T2[18,27]=100 ; 

 

 
Figure 3. A solid body in the shape of a cube 

when divided into 8 elements 

 

3) when m =3 (Figure 4): 

T3[0,15]=90, T3[16,31]=93.3, T3[32,47]=96.6, 

T4[48,63]=100; 

 

 
Figure 4. A solid body in the shape of a cube when divided 

into 27 elements 

 

4) when m =4 (Figure 5): 

T4[0,24]=90, T4[25,49]=92.5, T4[50,74]=95, 

T4[75,99]=97.5, T4[99,124]=100; 

INTERNATIONAL JOURNAL OF MECHANICS 
DOI: 10.46300/9104.2022.16.8 Volume 16, 2022 

E-ISSN: 1998-4448 69



 

 

 
Figure 5. A solid body in the form of a cube when divided into 

125 elements 

 

The laws of temperature distribution for the thermally 

insulated case, when m=1, m=2, m=3 and m=4 they turned 

out to be the same, corresponding to a straight line between the 

points (0, 90) and (0.015, 100) (Figure 6). 

 

 
Figure 6. The law of temperature distribution in a cube for the 

thermally insulated case at m=1, m=2, m=3 and m=4 

 

From the data T4[0,124] it can be seen that in the thermally 

insulated case, the temperature in the sections of the cube 

perpendicular to the z axis is the same.  

The temperature values at the nodal points of the cube for 

the non-insulated case when m =1, m =2, m =2 and m=4 

turned out to be equal: 

 

1) m =1 (Figure 2): 

 

    T1[0,7]= [47.831326, 47.831326,  47.831326, 47.831326, 

         53.253014,  53.253014, 53.253014, 53.253014] 

 

2) m =2 (Figure 3): 

 

    T2[0,27]= [48.013096, 48.41593, 48.013096, 

         48.41593,  48.839104, 48.41593, 

         48.013096, 48.41593,  48.013096, 

      

         49.642757, 50.13417,  49.642757, 

        50.13417,  50.650364, 50.13417, 

        49.642757, 50.13417,  49.642757, 

      

        53.277725, 53.897366, 53.277725, 

        53.897366, 54.547207, 53.897366, 

        53.277725, 53.897366, 53.277725] 

 

3) m =3 (Figure 4): 

 

    T3[0,63]= [48.041508, 48.4015,   48.4015,   48.041508, 

     48.4015,   48.777603, 48.777603,  48.4015, 

     48.4015,   48.777603, 48.777603, 48.4015, 

     48.041508, 48.4015,  48.4015,   48.041508,  

 

     48.937553, 49.337643, 49.337643, 48.937553, 

     49.337643,  49.755657, 49.755657, 49.337643, 

     49.337643, 49.755657, 49.755657, 49.337643, 

     48.937553, 49.337643, 49.337643, 48.937553,  

 

     50.61583,  51.09144,  51.09144,  50.61583, 

     51.09144,  51.588215, 51.588215, 51.09144, 

     51.09144,  51.588215,  51.588215, 51.09144, 

     50.61583,  51.09144,  51.09144,  50.61583, 

 

     53.286686,  53.833485, 53.833485, 53.286686, 

     53.833485, 54.403946, 54.403946, 53.833485,      

     53.833485, 54.403946, 54.403946, 53.833485, 

     53.286686, 53.833485, 53.833485,  53.286686]. 

5) m =4 (Figure 5): 

T4[0,124]= [ 48.05157, 

48.355335,48.457405,48.355335,48.05157, 

         48.355335,48.67056, 48.776478,48.67056, 

48.355335, 

         48.457405,48.776478,48.88369, 

48.776478,48.457405, 

         48.355335,48.67056, 48.776478,48.67056, 

48.355335, 

         48.05157, 

48.355335,48.457405,48.355335,48.05157, 

 

         48.65424, 

48.980705,49.090366,48.980705,48.65424, 

         48.980705,49.31949, 49.433285,49.31949, 

48.980705, 

         

49.090366,49.433285,49.548473,49.433285,49.0903

66, 

         48.980705,49.31949, 49.433285,49.31949, 

48.980705, 

         48.65424, 

48.980705,49.090366,48.980705,48.65424, 

 

         49.680595,50.04532, 50.16767, 50.04532, 

49.680595, 

         50.04532, 50.42379, 50.55075, 50.42379, 

50.04532, 

         50.16767, 50.55075, 50.679253,50.55075, 

50.16767, 

         50.04532, 50.42379, 50.55075, 50.42379, 

50.04532, 

         49.680595,50.04532, 50.16767, 50.04532, 

49.680595, 

 

         51.184772,51.603752,51.74121, 

51.603752,51.184772, 
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51.603752,52.038383,52.180992,52.038383,51.6037

52, 

         51.74121, 

52.180992,52.325314,52.180992,51.74121, 

         

51.603752,52.038383,52.180992,52.038383,51.6037

52, 

         51.184772,51.603752,51.74121, 

51.603752,51.184772, 

 

         53.28972, 53.75355, 53.896935,53.75355, 

53.28972, 

         53.75355, 54.2343,  54.383083,54.2343,  

53.75355, 

         53.896935,54.383083,54.53367, 

54.383083,53.896935, 

         53.75355, 54.2343,  54.383083,54.2343,  

53.75355, 

         53.28972, 53.75355, 53.896935,53.75355, 

53.28972]. 

 

Consider the temperatures for the edge of the cube passing 

through the nodes: 

 - (0-4) at m =1. Here the temperature in the nodes is T1= 

[47.831326,  

53.253014]; 

 - (0,9,18) at m =2. Here the temperature in the nodes is T2= 

[48.013096, 49.642757, 53.277725]; 

-  (0,16,32,48) at m =3. Here the temperature in the nodes is 

T3= [48.041508, 48.937553, 50.61583, 53.286686]. 

-  (0,26,50,75,100) at m =4. Here the temperature in the nodes 

is T4= [48.05157, 48.65424, 49.680595, 

51.184772б53.28972]. 

The temperature distribution laws for these nodes are shown in 

Figure 7.  

 
Figure 7. The law of temperature distribution in a cube for the 

non-insulated case at m=1, m=2, m=3 and m=4 

 

Comparison of the temperature distribution laws for a 

rectangular parallelepiped (mx=my=1 and mz=5) and a rod 

(m=5) under the influence of temperature and the presence of 

heat exchange in the non-insulated case 

The figure in blue shows the laws of temperature 

distribution for the thermally insulated case for m =1,  red for 

m=2, green for  m =3, and black for m =4.  

Figure 7 also shows that the temperature distribution law 

for the non-insulated case is nonlinear.  

To find the maximum relative error, we find the deviation 

of the graphs for the case m =2 and m =3. Consider the values 

of these graphs in points x=(0,0.005, 0.0075,0.01,0.015), 

where linearity changes (table 1). 

 

Table 1. Temperature deviation for m =2 and m =3 

X 0 0.005 0.0075 0.01 0.015 

T 2  48.01 49.1 49.6 50.85 53.28 

T3  48.04 49.1 49.6 50.85 53.28 

D=abs( T3 -

T3 ) 

0.03 0.17 0.18 0.23 0.01 

 

Find the maximum value in the table row d: dmax=0.23 and 

the minimum value from the string m =3: Tmin=48.04.  

The maximum relative error in percent does 

not exceed: 
max 23

100% 0.5%
min 48.04

d

T
    

 

When comparing graphs for m=3 and m=4 according to the 

above method, the relative error does not exceed d= 0.2%. 

This suggests that to obtain a relative error not exceeding 

0.5%, splitting the cube along the x, y and z axes into 3 

elements is sufficient, and for this error not to exceed 0.2%, 

splitting the cube into 4 elements is sufficient. 

Let us now compare the laws of temperature distribution 

along some lines of the cube parallel to the axis z for m=3. 

Temperatures at m =3 for the edge of the cube (nodes 0, 

16, 32,48) are equal to Tr= [48.041508, 48.937553, 50.61583, 

53.286686].  

The values of Tc temperatures at the nodes along the line 

passing through the center of the cube (line AB of Figure 2) 

parallel to the z axis are determined by (6): 

 

0 0

0 0

0 0

0 0

[0] (a/ 6, / 6,0)T[5] (a/ 6, / 6,0)T[6]

(a/ 6, / 6,0)T[9] (a/ 6, / 6,0)T[10]

(a/ 6, / 6,0)T[21] (a/ 6, / 6,0)T[22]

(a/ 6, / 6,0)T[25] (a/ 6, / 6,0)T[26];

cT a a

a a

a a

a a

 

 

 

 

  

 

 



 

 

0 0

0 0

0 0

0 0

[1] (a/ 6, / 6,a/ 3)T[5] (a/ 6, / 6,a/ 3)T[6]

(a/ 6, / 6, / 3)T[9] (a/ 6, / 6,a/ 3)T[10]

(a/ 6, / 6,a/ 3)T[21] (a/ 6, / 6,a/ 3)T[22]

(a/ 6, / 6,a/ 3)T[25] (a/ 6, / 6,a/ 3)T[26];

cT a a

a a a

a a

a a

 

 

 

 

  

 

 



 

 

0 0

0 0

0 0

0 0

[2] (a/ 3, / 6,0)T[37] (a/ 3, / 6,0)T[38]

(a/ 3, / 6,0)T[41] (a/ 3, / 6,0)T[42]

(a/ 3, / 6,0)T[53] (a/ 3, / 6,0)T[54]

(a/ 3, / 6,0)T[57] (a/ 3, / 6,0)T[58];

cT a a

a a

a a

a a
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0 0

0 0

0 0

0 0

[3] (a/ 3, / 6,a/ 3)T[38] (a/ 3, / 6,a/ 3)T[39]

(a/ 3, / 6,a/ 3)T[42] (a/ 3, / 6,a/ 3)T[43]

(a/ 3, / 6,a/ 3)T[54] (a/ 3, / 6,a/ 3)T[55]

(a/ 3, / 6,a/ 3)T[58] (a/ 3, / 6,a/ 3)T[59];

cT a a

a a

a a

a a

 

 

 

 

  

 

 



 

 

As a result, we get Tc= [48.777603 49.755657 51.588215 

54.1187155]. 

The temperature values Tr for the middle of the right face 

of the cube (line CD of Figure 2) are also obtained by (6): 

0 0

0 0

0 0

0 0

[0] (a/ 3, / 6,0)T[6] (a/ 3, / 6,0)T[7]

(a/ 3, / 6,0)T[9] (a/ 3, / 6,0)T[10]

(a/ 3, / 6,0)T[22] (a/ 3, / 6,0)T[23]

(a/ 3, / 6,0)T[26] (a/ 3, / 6,0)T[27];

rT a a

a a

a a

a a

 

 

 

 

  

 

 



 

 

0 0

0 0

0 0

0 0

[1] (a/ 3, / 6,c/ 3)T[6] (a/ 3, / 6,c/ 3)T[7]

(a/ 3, / 6,3 / 2)T[9] (a/ 3, / 6,c/ 3)T[10]

(a/ 3, / 6,c/ 3)T[22] (a/ 3, / 6,c/ 3)T[23]

(a/ 3, / 6,c/ 3)T[26] (a/ 3, / 6,c/ 3)T[27];

rT a a

a a

a a

a a

 

 

 

 

  

 

 


 

 

0 0

0 0

0 0

0 0

[2] (a/ 3, / 6,0)T[38] (a/ 3, / 6,0)T[39]

(a/ 3, / 6,0)T[42] (a/ 3, / 6,0)T[43]

(a/ 3, / 6,0)T[54] (a/ 3, / 6,0)T[55]

(a/ 3, / 6,0)T[58] (a/ 3, / 6,0)T[59];

rT a a

a a

a a

a a

 

 

 

 

  

 

 



 

 

0 0

0 0

0 0

0 0

[3] (a/ 3, / 6,c/ 3)T[38] (a/ 3, / 6,c/ 3)T[39]

(a/ 3, / 6,c/ 3)T[42] (a/ 3, / 6,c/ 3)T[43]

(a/ 3, / 6,c/ 3)T[54] (a/ 3, / 6,c/ 3)T[55]

(a/ 3, / 6,c/ 3)T[58] (a/ 3, / 6,c/ 3)T[59];

rT a a

a a

a a

a a

 

 

 

 

  

 

 



 

 As a result , we get Tr= [47.83, 48.41593, 50.13417, 

53.897366]. 

 

The laws of temperature distribution for these cases are shown 

in Figure 8. 

 
Figure 8. Temperature distribution laws for the edge, the 

middle of the face and the center of the cube 

 

It can be seen from the figure that the temperature values along 

the line AB of Figure 2 passing through the center of the cube 

are greater than the temperature on the edge (0-4) of Figure 2 

and the temperature on the line passing through the middle of 

the cube face (line CD of Figure 2).  In turn, the temperature 

on the CD line of Figure 2 is greater than the temperature on 

the AB line of Figure 2. This means that the farther the line is 

from the center, the lower its temperature.  

 In order to verify the correctness of the proposed 

approach and the calculations performed, a comparative 

analysis of the temperature distribution laws for a rectangular 

parallelepiped was carried out at mx=my=1 and mz=5 (figure 

9), and the rod (figure 10) with the number of elements m=5, 

considered in [23]. 

 

 
Figure 9. A solid body in the form of a rectangular 

parallelepiped at mx=my=1 and mz=5. 

 
Figure 10. Design scheme of the rod. 

 

The initial data for a rectangular parallelepiped were taken 

equal to: 

0
0.015 , 0.015 , 0.075,K 7500 ,xx

BT
a m b m c

m C
     

0 0

2 0
40 , 150 , 100000 .at

BT
T C q C h

m C
     

 

Temperature values at the nodal points along the axis z 

rectangular parallelepiped (when mx=my=1, mz=5) (when 

exposed to temperature at the border (20-21-22-23), and at the 

nodal points of the rod (at m= 5) for the non-insulated case are 

presented in Tables 2 and 3, and the laws of temperature 

distribution in Figure 11. The calculation results for the rod 

were obtained according to the methodology described in [23]. 

 

Table 2. Non-insulated case - parallelepiped 

x  0 0.015 0.03 0.045 0.06 0.075 

Т 40.05 40.09 40.2 40.5 41.3 43.2 
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Table 3. Non-insulated case – rod 

X 0 0.015 0.03 0.045 0.06 0.075 

Т 40.1 40.2 40.4 40.8 41.7 43.8 

 

 
Figure 11. Comparison of temperature distribution 

laws for a rectangular parallelepiped (mx=my=1 и mz=5) and 

the rod (m=5) under the influence of temperature and the 

presence of heat exchange in the non-insulated case 

 

Figure 10 shows in red the temperature distribution law for a 

rectangular parallelepiped, and in blue for a rod.  

The figure also shows that the temperature distribution 

laws for a rectangular parallelepiped and a rod are very close, 

and from Tables 2 and 3 it can be determined that the 

maximum relative error does not exceed: 

 

100
(43.8 43.2)* 1.39%

43.2
  . 

 

This difference is due to the different shape and cross-

sectional area of a rectangular parallelepiped (0.0004 
2m ) 

and the rod (0.000314 
2m ).   

The temperature values at the nodal points along the z 

axis of the rectangular parallelepiped and the rod for the 

thermally insulated case with the same initial data completely 

coincided, and are presented in Table 4. 

 

Table 4. Thermally insulated case - rectangular parallelepiped 

and rod 

x 0 0.015 0.03 0.045 0.06 0.075 

Т 55 58 61 64 67 70 

 

The proximity of the results of comparing the temperature 

distribution laws for a rectangular parallelepiped and a rod 

shows the possibility of using the proposed approach to solve 

practical problems of heat transfer. 

V. CONCLUSION 

In this paper, a general variational functional is obtained for 

determining the law of temperature distribution in the body of 

a rectangular parallelepiped shape, when a heat flow enters 

one of the faces of a rectangular parallelepiped, and heat 

exchange with the environment occurs on the opposite side. 

Nonlinear temperature approximation is used to minimize the 

obtained functional at discrete points. The minimization of the 

general functional by the temperatures set at the nodal points is 

carried out. At the same time, the minimization problem is 

reduced to solving systems of linear equations. The 

temperature values at the nodal points are used to estimate the 

temperature distribution law at any point of the body in the 

form of a rectangular parallelepiped. The proposed approach is 

applied to solve specific problems when a heat flow is applied 

to one side of the parallelepiped, and heat exchange with the 

environment occurs on the opposite side. It is shown that even 

when dividing a rectangular parallelepiped into three elements, 

the relative temperature error does not exceed 0.5%. 

To test the proposed approach, a comparative analysis of the 

laws of temperature distribution in the body of a rectangular 

parallelepiped shape, whose length in z is much greater than 

the length of the other sides, with a rod with similar geometric 

characteristics, is carried out. It turned out that the relative 

error in determining temperatures does not exceed 1.39%. This 

error is due to the difference in the shape and cross-sectional 

area of the rod and the rectangular parallelepiped 

perpendicular to the z axis. 
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