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Abstract—We  propose an  optimization been generalized by Guest ané&¥ast in [9]. They
algorithm for the geometric control of fluid flow. treated the material phase as a porous medium
the used approach is based on the topological where fluid flow is governed by Darcy’s law. For
sensitivity analysis method. It consists in impermeable solid material, the no-slip condition is
studying the variation of a cost function with ~simulated by using a small value for the material
respect to the insertion of a small obstacle in the Permeability to obtain negligible fluid velocities at
domain. Some theoretical and numerical results the nodes of solid elements. The flow regularization
are presented in 2D and 3D. is expressed as a system of equations; Stokes flow
governs in void elements and Darcy flow governs
in solid elements.

In this paper, we propose a new, fast and ac-
curate optimization algorithm based on topological
sensitivity analysis [1], [2], [10], [13], [14], [20]. It
consists in studying the variation of a cost function

HE optimal control of fluid flows has long with respect to a small topological perturbation of
been receiving considerable attention by engthe fluid flow domain.
neers and mathematicians due to its importance inTo present the basic idea, let us consider a
many applications involving fluid related technoldomainQ ¢ IR? d = 2,3 and a cost function
ogy [11], [16]. There is a wealth of literature on op-j(2) = J(Q,uq), Whereug, is the velocity field
timal control of flows through suction and injectionsolution to Stokes problem defined(n Fors > 0,
of fluid along domain boundaries, see e.g. [7], [12]et Q. = Q\(z( + ew) be the fluid domain ob-
In the context of design, one of the first studies igined by inserting a small obstacig + cw in Q,
found in [18]. It is devoted to determine a minimumwhere z, € Q andw ¢ IR? is a fixed bounded
drag profile submerged in a homogeneous, steadgmain containing the origin, whose boundary
viscous fluid by using optimal control theories fodw is connected and piecewise of clags. The
distributed parameter systems. Next, many shapgpological sensitivity analysis method leads to
optimization methods are introduced to determingn asymptotic expansion of the functignin the
the design of minimum drag bodies [8], [15], [19],following form:
diffusers [5], and airfoils [6], [17]. The majority of ) )
works dealing with optimal design of flow domains 7(Qe) = 5(8) + f(e)g(wo) + o(f(2)),
fall into the category of shape optimization andvhere f(¢) is a scalar positive function going to
are limited to determine the optimal shape of amero with ¢. This expression is called the topo-
existing boundary. logical asymptotic expansion anglis called the

It is only recently that topological optimizationtopological gradient. The function is very easy
has been developed and used in fluid design prote- compute. In order to minimize the cost function,
lems. It can be used to design features within thiae best location to insert a small obstacle(in
domain allowing new boundaries to be introduceis whereg is negative. In fact ifg(zo) < 0, we
into the design. In this context, one of the firshave j(Q.) < j(Q) for small e. Starting with
approaches is proposed by Borvall and Peterssthis observation, a topological optimization algo-
in [3]. They implemented the relaxed materiatithm can then be constructed. The optimal design
distribution approach to minimize the power disis obtained using an iterative process building a
sipated in Stokes flow. To approximate the no-slipequence of geometrig$); ), with Qp = Q. At
condition along the solid-fluid interface they usedhe k" iteration the topological gradieny; is
a generalized Stokes problem to model fluid flolkomputed inQ2;, and the new geometrfl; is
throughout the domain. Later, this approach hasbtained by inserting an obstaklg in the domain
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Qi; Qi1 = Q\wg. The obstacley,, is defined by the cost functionJ.(u.). Then, the optimization

a level set curve ofy problem we consider is given as follows:
wi = {z € Qy, such thatg,(z) < ¢, < 0}, micrsl2 Je(ue) such that, for some., (4)
where ¢;, is chosen in such a way that the cost (ue,pe) is @ solution of (1) inQ\w;.

function j decreases as most as possible. This al-_., . . . . .
: 0 this end, we will derive a topological asymptotic
gorithm can be seen as a descent method where t 18 ansion of the function with respect tos
descent direction is determined by the topologicéal P 7 P ’
sensitivity g, and the step length is given by the
volume variationmeas(4\ Qs +1) [1l. TOPOLOGICAL SENSITIVITY ANALYSIS
The paper is organized as follows. In section 2, In our topological sensitivity analysis, we have
we give a statement of the optimization problerfo distinguish the case¢ = 2 andd = 3. This
Section 3 is devoted to a topological sensitivitys due to the fact that the fgndar_ne2ntal solu:;uons
analysis for the Stokes equations. The obtaindd, II) to the Stokes equations ifR” and IR
results are valid for a large class of cost functionfiave essentially different asymptotic behaviour at
Similar analysis is developed by Guillaume anénfinity. We have ifd = 3

Sidldris in [10]. Their approach is based on an 1 -
adaptation of the adjoint method and a domain E(y) = Py (I+erer)»
truncation technique that provides an equivalent y
formulation of the PDE in a fixed functional space. (y) = P

In this work, we derive a simplified topological

sensitivity analysis for the Stokes equations WithOl?tnd ifd =2

using the truncation technique. In section 4, we E(y) = 7( —log(r)l—i—eTeTT),
present some numerical experiments showing the dmv

efficiency of our approach. (y) = Y

2mr2’
Il. TOPOLOGICAL OPTIMIZATION PROBLEM  With 7 = ||y||, ¢, = y/r ande! is the transposed

vector ofe,..

Consider a viscous incompressible fluid flow Next we assume thaf. satisfies the followin
in a bounded domaif2 c R? d = 2,3. We . € 9
assumption.

assume that the fluid flow is governed by the Stokes Hypothesis 3.11) Jo is differentiable with re-

equations. : - i
__ . . pect tou, its derivative being denoted by Jy(u).
We denote by2\w; the perturbed domain, obtamedﬁ) There exists a real numb@/ such that = > 0

by inserting a small obstacle. = x + cw in the
initial domain flowQ2. In Q\wz, the velocityu. and Je(us) — Jo(ug) =  DJo(uo)(te — uo) )

the pressure, are solution to +f(€)dJ + o(e),
—vAu.+Vp. =F in Q\w; wheref is a scalar function and. is an extension
dvu. =0 inQ\w: of u. in Q respectively defined by:
1)
uz =0 onl e if d=3
— fle)= . D
Ue 0 ondw.. { —1/log(e) if d=2,
wherev is the (constant) fluid kinematic viscosity,
and F is a given body force per unit of mass. Note G o] ue in Q\wg,
that fore = 0, (ug, po) is solution to R () in we.
—vAug+Vpy =F inQ A- The three dimensional case:Let (U, P)
dvu =0 inQ (2) denotes a solution to
u =0 onT.
Consider now a design functighof the form —-vAU+VP =0 in R*\w
. dvU =0 in R*\w ©)
J(\©z) = Je(ue), 3) U — 0 at oo

where J. is defined onH! (Q\w;)¢ for € > 0 U = —uo(ro) oONw.

Our aim is to determine the optimal location of théVe start the derivation of the topological asymp-
obstaclew. in the domain() in order to minimize totic expansion with the following estimate of the
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H'(Q\wz) norm of u, (x) — ug(x) — U(z/e). This Theorem 3.2:If the assumption 3.1 holds;j
estimate plays a crucial role in the derivation ofdmits the following asymptotic expansion
our topological asymptotic expansion. It describes )
the velocity perturbation caused by the presence G \w2) = G+
the small obstacle..

Proposition 3.1: There existsc > 0, indepen-
dent ofe, such that for ale > 0 we have

@ |:47TZ/ Ug (l‘o).’Uo (l‘o)

+6J} + o(‘—l)

log(e)

IV. NUMERICAL EXAMPLES

We consider a tank filled with a viscous and
incompressible fluid. The aim is to determine the

The following corollary follows from Proposition optimal shape of the fluid flow domain minimizing
3.1. It gives the behaviour of the velocity when 4 given objective function.

inserting.an _obs_tacle. The principal term qf this oyr implementation is based on the following
perturbation is given by the functioli, solution qnimization algorithm. We apply an iterative pro-

e () — uoa) — Ue/e) | o < ce.

to (6).
Corollary 3.1: We have

ue(z) = up(z) + U(x/e) + O(e), x€ QNw:.

cess to build a sequence of geometri€k,).>o
with Qy = Q. At the k*" iteration the topological
gradientg, is computed in2; and the new geom-
etry Q41 is obtained by inserting an obstaclg

We are now ready to derive the topological asymgD the domain€; €4, = Q,\wi. The obstacle
totic expansion of the cost function It consists w« iS defined by a level set curve of

in computing the variation (Q\@;) — j(2) when

wy = {z € Q, such thatg,(z) < ¢, <0},

inserting a small obstacle inside the domain. The

leading term of this variation involves the solutionvhere c is chosen in such a way that the cost

to a boundary integral equation (see Theorem 3.Tynction j decreases as much as possible.
Theorem 3.1:[13] If the assumption 3.1 holds, The algorithm :

the function;j has the following asymptotic expan-® Initialization: choose2, = €, and sett = 0.

sion
@) = () +e [ (= o n(y) ds))-volwo)
+5J} + o(e),
whereuwy is the solution to the adjoint problem
—vAvg+Vq = —DJ(’LLo) in Q
div v =20 in Q
v9 =0 onT.

The functionn € H~/2(dw)? is the solution to
the following boundary integral equation

E(y —z)n(x) ds(z) = —ug(z0), Vy € Ow.
Ow
In the particular case wherew = B(0,1),
the density n is given explicitly n(y) =

f—yuo(mg), Yy € Jw.
Corollary 3.2: If w
sumption 3.1 we have

J(N\we)

B(0,1), under the as-

Jj(Q) +e [Gm/ wo(xo).vo(xo) + 6J
+o(e).

B- The two dimensional case:In the two di-

e Repeat untilg;, > 0 in Q:

- solve the Stokes equations ¥y,

- solve the associated adjoint problem(iy,

- compute the topological sensitivity(x)

Vr € Qk,
- determine the obstacle;,,
- setQy1 = \wy,
o k+—Fk+1.

This algorithm can be seen as a descent method
where the descent direction is determined by the
topological sensitivityg;, and the step length is
given by the volume variatiomneas(Q;\Qk+1)-
The natural optimality conditiomy (z) > 0,Vz €
O, is used as stopping criteria [4].
Approximation of a wanted flowThe aim is to
determine the optimal shag@* C  of the fluid
flow domain such that the velocityy-«, solution to
the Stokes equations i@?*, approximate a wanted
flow w, defined in a fixed domain2,,, C Q.
The optimal shap&®* can be characterized as the
solution to the following topological optimization
problem

min

— wy|?dx
OCQ/Qm|uo waldX,

whereup is the solution to the Stokes equations

mensional case we have the following asymptotigy © < Q. This test is treated in two and three

expansion.
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[0,1], the domain,,, = [0,1.5] x [0.8,1] and the
velocity field w, is defined byw,; = (1,0) in Q,,
andwg = (0,0) elsewhere. The numerical results
are described in Figure 1. A 3D extension of this
case is presented in Figure 2.

un=0

) — tagaflon —=
R -

u=(00)

T u=09

=

u=(00)

(a) The initial geometnf) (b) The velocity field
in the initial domain

(3]

(4]

(3]
(6]

(7]

(8]

9]

[10]
[11]
[12]
(c) The optimal domain (d) The velocity field in
is obtained in only 3 it- the obtained domain
erations ) .
Fig. 1. Approximation of a wanted flow: 2D case [13]
[14]
[15]
u=(0,0,0) [1 6]
(a) The initial geometry (b) The velocity field [17]
in the initial domain
(18]
[19]
[20]

(c) The optimal domain is (d) The velocity field
obtained in only 4 itera- in the obtained domain
tions

Fig. 2. Approximation of a wanted flow: 3D case

REFERENCES

[1] G. Allaire, F. Jouve, A-M. Toader , Structural optimiza-
tion using sensitivity analysis and a level-set method, J.
Comput. Phys., 194 (1), 2004, 363-393.

[2] M. Bendsoe , Optimal topology design of continuum
structure: an introduction, Technical report, Departe-
ment of mathematics, Technical University of Denmark,
DK2800 Lyngby, Denmark, 1996.

E-ISSN: 2313-0555 1"

Volume 9, 2022

T. Borrvall, J. Petersson , Topological optimization of
fluids in Stokes flow, Inter. J. Numer. Methods Fluids,
41 (1), 2003, 77-107.

G. Buttazzo, G. Dal Maso , Shape optimization for
Dirichlet problems: Relaxed formulation and optimality
conditions, Appl. Math. Optim., 23, 1991, 17-49.

H. Cabuk, V. Modi , Optimum plane diffusers in laminar
flow, J. of Fluid Mechanics, 237, 1992, 373-393.

E.M. CIiff, M. Heinkenschloss, A. Shenoy , Airfoil design
by an all-at-once method, Inter. J. Compu. Fluid Mechan-
ics, 11, 1998, 3-25.

O. Ghattas, J-H. Bark , Optimal control of two and three
dimensional incompressible Navier-Stokes flows, Journal
of Computational Physics, 136, 1997, 231-244.

R. Glowinski, O. Pironneau , On the numerical compu-
tation of the minimum drag profile in laminar flow, J. of
Fluid Mechanics, 72, 1975, 385-389.

J. K. Guest, J. H. Favost , Topology optimization of
creeping fluid flows using a Darcy-Stokes finite element,
Inter. J. Numer. Methods in Engineering, 66, 2006, 461-
484,

Ph. Guillaume, K.Sid Idris , Topological sensitivity and
shape optimization for the Stokes equations, SIAM J.
Control Optim., 43(1), 2004, 1-31.

M.D. Gunzburger , Perspectives in flow control and
optimization, Advances in Design and Control, SIAM,
Philadelphia, PA, 2003.

M. Gunzburger, H. Kim, S. Manservisi , On a shape con-
trol problem for the stationary Navier-Stokes equations,
M2AN Math. Model. Numer. Anal. , 34 (6), 2000, 1233-
1258.

M. Hassine, S. Jan, M. Masmoudi , From differential
calculus to0 — 1 topological optimization, SIAM J. Cont.
Optim., 45 (6), 2007, 1965-1987.

M. Hassine, M. Masmoudi , The topological sensitivity
analysis for the Quasi-Stokes problem, ESAIM, COCV
J., 10, 2004, 478-504.

D.W. Kim, M.U. Kim , Minimum drag shape in two two-
dimensional viscous flow, Inter. J. Numer. Methods in
Fluids, 21, 1995, 93-111.

B. Mohammadi, O. Pironneau , Applied shape optimiza-
tion for fluids, Numerical Mathematics and Scientific
Computation, Oxford University Press, New York, 2001.
O. Pironneau , On optimum profiles in Stokes flow, J. of
Fluid Mechanics, 59, 1973, 117-128.

O. Pironneau , On optimal design in fluid mechanics, J.
Fluid Mech., 64, 1974, 97-110.

O. Pironneau , Optimal Shape Design for Elliptic Systems,
Springer, Berlin, 1984.

J. Sokolowski, A. Zochowski , On the topological deriva-
tive in shape optimization, SIAM J. Control Optim., 37
(4), 1999, 1251-1272.

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0

https://creativecommons.org/licenses/by/4.0/deed.en US






