
Approximation of a wanted flow via
topological sensitivity analysis

I . INTRODUCTION

T HE optimal control of fluid flows has long
been receiving considerable attention by engi-

neers and mathematicians due to its importance in
many applications involving fluid related technol-
ogy [11], [16]. There is a wealth of literature on op-
timal control of flows through suction and injection
of fluid along domain boundaries, see e.g. [7], [12].
In the context of design, one of the first studies is
found in [18]. It is devoted to determine a minimum
drag profile submerged in a homogeneous, steady,
viscous fluid by using optimal control theories for
distributed parameter systems. Next, many shape
optimization methods are introduced to determine
the design of minimum drag bodies [8], [15], [19],
diffusers [5], and airfoils [6], [17]. The majority of
works dealing with optimal design of flow domains
fall into the category of shape optimization and
are limited to determine the optimal shape of an
existing boundary.

It is only recently that topological optimization
has been developed and used in fluid design prob-
lems. It can be used to design features within the
domain allowing new boundaries to be introduced
into the design. In this context, one of the first
approaches is proposed by Borvall and Petersson
in [3]. They implemented the relaxed material
distribution approach to minimize the power dis-
sipated in Stokes flow. To approximate the no-slip
condition along the solid-fluid interface they used
a generalized Stokes problem to model fluid flow
throughout the domain. Later, this approach has

been generalized by Guest and Prévast in [9]. They
treated the material phase as a porous medium
where fluid flow is governed by Darcy’s law. For
impermeable solid material, the no-slip condition is
simulated by using a small value for the material
permeability to obtain negligible fluid velocities at
the nodes of solid elements. The flow regularization
is expressed as a system of equations; Stokes flow
governs in void elements and Darcy flow governs
in solid elements.

In this paper, we propose a new, fast and ac-
curate optimization algorithm based on topological
sensitivity analysis [1], [2], [10], [13], [14], [20]. It
consists in studying the variation of a cost function
with respect to a small topological perturbation of
the fluid flow domain.

To present the basic idea, let us consider a
domain Ω ⊂ IRd, d = 2, 3 and a cost function
j(Ω) = J(Ω, uΩ), whereuΩ is the velocity field
solution to Stokes problem defined inΩ. Forε > 0,
let Ωε = Ω\(x0 + εω) be the fluid domain ob-
tained by inserting a small obstaclex0 + εω in Ω,
where x0 ∈ Ω and ω ⊂ IRd is a fixed bounded
domain containing the origin, whose boundary
∂ω is connected and piecewise of classC1. The
topological sensitivity analysis method leads to
an asymptotic expansion of the functionj in the
following form:

j(Ωε) = j(Ω) + f(ε)g(x0) + o(f(ε)),

wheref(ε) is a scalar positive function going to
zero with ε. This expression is called the topo-
logical asymptotic expansion andg is called the
topological gradient. The functiong is very easy
to compute. In order to minimize the cost function,
the best location to insert a small obstacle inΩ
is whereg is negative. In fact ifg(x0) < 0, we
have j(Ωε) < j(Ω) for small ε. Starting with
this observation, a topological optimization algo-
rithm can then be constructed. The optimal design
is obtained using an iterative process building a
sequence of geometries(Ωk)k with Ω0 = Ω. At
the kth iteration the topological gradientgk is
computed inΩk and the new geometryΩk+1 is
obtained by inserting an obstableωk in the domain
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Ωk; Ωk+1 = Ωk\ωk. The obstacleωk is defined by
a level set curve ofgk

ωk = {x ∈ Ωk, such thatgk(x) ≤ ck < 0} ,

where ck is chosen in such a way that the cost
function j decreases as most as possible. This al-
gorithm can be seen as a descent method where the
descent direction is determined by the topological
sensitivity gk and the step length is given by the
volume variationmeas(Ωk\Ωk+1).

The paper is organized as follows. In section 2,
we give a statement of the optimization problem.
Section 3 is devoted to a topological sensitivity
analysis for the Stokes equations. The obtained
results are valid for a large class of cost functions.
Similar analysis is developed by Guillaume and
SidIdris in [10]. Their approach is based on an
adaptation of the adjoint method and a domain
truncation technique that provides an equivalent
formulation of the PDE in a fixed functional space.
In this work, we derive a simplified topological
sensitivity analysis for the Stokes equations without
using the truncation technique. In section 4, we
present some numerical experiments showing the
efficiency of our approach.

II. TOPOLOGICAL OPTIMIZATION PROBLEM

Consider a viscous incompressible fluid flow
in a bounded domainΩ ⊂ IRd, d = 2, 3. We
assume that the fluid flow is governed by the Stokes
equations.
We denote byΩ\ωε the perturbed domain, obtained
by inserting a small obstacleωε = x0 + εω in the
initial domain flowΩ. In Ω\ωε, the velocityuε and
the pressurepε are solution to





−ν∆uε +∇pε = F in Ω\ωε

div uε = 0 in Ω\ωε

uε = 0 on Γ
uε = 0 on ∂ωε.

(1)

whereν is the (constant) fluid kinematic viscosity,
andF is a given body force per unit of mass. Note
that for ε = 0, (u0 , p0) is solution to




−ν∆u0 +∇p0 = F in Ω

div u0 = 0 in Ω
u0 = 0 on Γ.

(2)

Consider now a design functionj of the form

j(Ω\ωε) = Jε(uε), (3)

whereJε is defined onH1(Ω\ωε)d for ε ≥ 0
Our aim is to determine the optimal location of the
obstacleωε in the domainΩ in order to minimize

the cost functionJε(uε). Then, the optimization
problem we consider is given as follows:

min
ωε⊂Ω

Jε(uε) such that, for somepε, (4)

(uε, pε) is a solution of (1) inΩ\ωε.

To this end, we will derive a topological asymptotic
expansion of the functionj with respect toε.

III. T OPOLOGICAL SENSITIVITY ANALYSIS

In our topological sensitivity analysis, we have
to distinguish the casesd = 2 and d = 3. This
is due to the fact that the fundamental solutions
(E, Π) to the Stokes equations inIR2 and IR3

have essentially different asymptotic behaviour at
infinity. We have ifd = 3

E(y) =
1

8πνr

(
I + ere

T
r

)
,

Π(y) =
y

4πr3

and if d = 2

E(y) =
1

4πν

(
− log(r)I + ere

T
r

)
,

Π(y) =
y

2πr2
,

with r = ||y||, er = y/r and eT
r is the transposed

vector ofer.
Next we assume thatJε satisfies the following

assumption.
Hypothesis 3.1:i) J0 is differentiable with re-

spect tou, its derivative being denoted byDJ0(u).
ii) There exists a real numberδJ such that∀ ε ≥ 0

Jε(uε)− J0(u0) = DJ0(u0)(ûε − u0)
+f(ε)δJ + o(ε), (5)

wheref is a scalar function and̂uε is an extension
of uε in Ω respectively defined by:

f(ε) =
{

ε if d = 3,
−1/ log(ε) if d = 2,

ûε =
{

uε in Ω\ωε,
0 in ωε.

A- The three dimensional case:Let (U, P )
denotes a solution to





−ν∆U +∇P = 0 in IR3\ω
div U = 0 in IR3\ω

U −→ 0 at∞
U = −u0(x0) on ∂ω.

(6)

We start the derivation of the topological asymp-
totic expansion with the following estimate of the
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H1(Ω\ωε) norm ofuε(x)−u0(x)−U(x/ε). This
estimate plays a crucial role in the derivation of
our topological asymptotic expansion. It describes
the velocity perturbation caused by the presence of
the small obstacleωε.

Proposition 3.1:There existsc > 0, indepen-
dent ofε, such that for allε > 0 we have

‖uε(x)− u0(x)− U(x/ε)‖1,Ω\ωε
≤ c ε.

The following corollary follows from Proposition
3.1. It gives the behaviour of the velocityuε when
inserting an obstacle. The principal term of this
perturbation is given by the functionU , solution
to (6).

Corollary 3.1: We have

uε(x) = u0(x) + U(x/ε) + O(ε), x ∈ Ω\ωε.

We are now ready to derive the topological asymp-
totic expansion of the cost functionj. It consists
in computing the variationj(Ω\ωε) − j(Ω) when
inserting a small obstacle inside the domain. The
leading term of this variation involves the solution
to a boundary integral equation (see Theorem 3.1).

Theorem 3.1:[13] If the assumption 3.1 holds,
the functionj has the following asymptotic expan-
sion

j(Ω\ωε) = j(Ω) + ε
[(
− ∫

∂ω
η(y) ds(y)

)
.v0(x0)

+δJ
]

+ o(ε),

wherev0 is the solution to the adjoint problem



−ν∆v0 +∇q0 = −DJ(u0) in Ω

div v0 = 0 in Ω
v0 = 0 on Γ.

The functionη ∈ H−1/2(∂ω)3 is the solution to
the following boundary integral equation∫

∂ω

E(y − x) η(x) ds(x) = −u0(x0), ∀y ∈ ∂ω.

In the particular case whereω = B(0, 1),
the density η is given explicitly η(y) =

−3ν

2
u0(x0), ∀y ∈ ∂ω.

Corollary 3.2: If ω = B(0, 1), under the as-
sumption 3.1 we have

j(Ω\ωε) = j(Ω) + ε
[
6πν u0(x0).v0(x0) + δJ

]

+o(ε).

B- The two dimensional case:In the two di-
mensional case we have the following asymptotic
expansion.

Theorem 3.2:If the assumption 3.1 holds,j
admits the following asymptotic expansion

j(Ω\ωε) = j(Ω)+ −1
log(ε)

[
4πν u0(x0).v0(x0)

+δJ
]

+ o
(

−1
log(ε)

)
.

IV. N UMERICAL EXAMPLES

We consider a tankΩ filled with a viscous and
incompressible fluid. The aim is to determine the
optimal shape of the fluid flow domain minimizing
a given objective function.

Our implementation is based on the following
optimization algorithm. We apply an iterative pro-
cess to build a sequence of geometries(Ωk)k≥0

with Ω0 = Ω. At the kth iteration the topological
gradientgk is computed inΩk and the new geom-
etry Ωk+1 is obtained by inserting an obstacleωk

in the domainΩk; Ωk+1 = Ωk\ωk. The obstacle
ωk is defined by a level set curve ofgk

ωk = {x ∈ Ωk, such thatgk(x) ≤ ck < 0} ,

where ck is chosen in such a way that the cost
function j decreases as much as possible.
The algorithm :
• Initialization: chooseΩ0 = Ω, and setk = 0.
• Repeat untilgk ≥ 0 in Ωk:

- solve the Stokes equations inΩk,
- solve the associated adjoint problem inΩk,
- compute the topological sensitivitygk(x)
∀x ∈ Ωk,

- determine the obstacleωk,
- setΩk+1 = Ωk\ωk,

• k ←− k + 1.
This algorithm can be seen as a descent method

where the descent direction is determined by the
topological sensitivitygk and the step length is
given by the volume variationmeas(Ωk\Ωk+1).
The natural optimality conditiongk(x) ≥ 0, ∀x ∈
Ok is used as stopping criteria [4].
Approximation of a wanted flow.The aim is to
determine the optimal shapeO∗ ⊂ Ω of the fluid
flow domain such that the velocityuO∗ , solution to
the Stokes equations inO∗, approximate a wanted
flow wd defined in a fixed domainΩm ⊂ Ω.
The optimal shapeO∗ can be characterized as the
solution to the following topological optimization
problem

min
O⊂Ω

∫

Ωm

|uO − wd|2dx,

whereuO is the solution to the Stokes equations
in O ⊂ Ω. This test is treated in two and three
dimensional cases. In 2D, the tankΩ = [0, 1.5] ×
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[0, 1], the domainΩm = [0, 1.5]× [0.8, 1] and the
velocity fieldwd is defined by:wd = (1, 0) in Ωm

and wd = (0, 0) elsewhere. The numerical results
are described in Figure 1. A 3D extension of this
case is presented in Figure 2.

Γin Γout

Ωm
target flow

dw

u= (0,0)

u= (0,0)

u= (0,0)

(1,0)u=(1,0)u=

u.n=0

(a) The initial geometryΩ (b) The velocity field
in the initial domain

(c) The optimal domain
is obtained in only 3 it-
erations

(d) The velocity field in
the obtained domain

Fig. 1. Approximation of a wanted flow: 2D case

mΩ

Γ Γin out

u.n=0

u=(1,0,0)

u=(0,0,0)
u=(0,0,0)

u=(1,0,0)

u=(0,0,0)

(a) The initial geometry (b) The velocity field
in the initial domain

(c) The optimal domain is
obtained in only 4 itera-
tions

(d) The velocity field
in the obtained domain

Fig. 2. Approximation of a wanted flow: 3D case
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