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Abstract—In order to meet the requirements of practical 

applications, a model of deforming manifold in the embedded 
space is proposed. The deforming vector and deforming field are 
presented to precisely describe the deforming process, which have 
clear physical meanings. The proposed model is a modification of 
the general differential dynamic model, with constraints of spatial 
and temporal continuity on the deforming field. The deformation 
integral and derivative are presented as compact expressions of 
manifold deforming process. Moreover, a specific autonomous 
deforming field with flattening effect is defined, which provides a 
novel geometric viewpoint on data dimension reduction. The 
effectiveness of this autonomous deforming field is proved by 
numerical computation simulations, which indicate the promising 
potential of the proposed model in practical dimension reduction 
tasks.  

Keywords—deforming field, deformation integral, 
dimension reduction, manifold deformation 

I. INTRODUCTION 
Manifold is a fundamental concept in modern mathematics. 

It plays an important role in modern researches in science and 
technology [1-20]. Especially, in the field of data science and 
artificial intelligence, manifold-based methods have been 
extensively studied [21-31]. There have been many researches 
on the mathematical description and topology property of 
manifold [32,33]. In mathematics, research mainly concentrates 
on static manifold. For deformed manifold, topological 
invariants provides global description under some topology-
preserving deformation restrictions [33-35]. 

On the other hand, in practical applications, there are many 
cases of time-varying manifold with deforming shapes, such as 
a part of undulating sea surface, the time-varying twisted space 
caused by the gravity of a moving nearby celestial body, or the 
manifold of a continuous speech signal in the signal space. The 
study on such non-static manifold needs a quantitative and 
meticulous mathematical description of the manifold deforming 
process. 

In this paper, the idea of deferential dynamics is introduced 
into the quantitative description of manifold deforming process. 
The deforming field on the manifold is proposed in the  
embedded space, which derives integral and deferential 
descriptions of the deforming process. A specific autonomous 
deforming field is also proposed to flatten the curved manifold 
in the embedded space, which has potential application in 

dimension reduction in data analysis. Simulation experiments 
prove the effectiveness of the proposed deforming field. The 
proposed model gives new insights into the geometric aspects of 
data dimension reduction. 

II. THE DEFORMING FIELD ON MANIFOLD AND THE 
DEFORMATION INTEGRAL 

In mathematics, the theory of deferential dynamics 
accurately describes the evolution of a system over time [36,37]. 
The trajectory of a point in the phase space can be determined 
by a group of deferential equations. The deforming process of a 
manifold can be regarded as the deformation of the 
corresponding geometry in the embedded space. In the 
embedded space, only the points on the manifold are involved 
in the deformation process. However, in differential dynamics, 
all the points in the phase space are involved in the “stream” 
determined by the solutions of the deferential equations. 
Moreover, there are infinite points on a smooth manifold, and its 
deformation involves all its points moving synchronously. This 
is different from the general deferential dynamic system, where 
each point independently forms its own trajectory in the phase 
space. Therefore, it is necessary to define specific mathematical 
descriptions for manifold deformation process, i.e. the dynamics 
of deforming manifold. 

There are two different forms of describing the manifold 
mathematically: the intrinsic form and extrinsic form [38,39]. 
The intrinsic form does not rely on the specific coordinate 
system of the embedded space, and the corresponding non-
Euclidean geometry plays a fundamental role in the description 
of time-space in modern physics. On the other hand, data vectors 
in modern data science have a natural form of extrinsic 
representation, which are the coordinates of data manifold points 
in the embedded space. Therefore, it is na tural to represent the 
data manifold deformation by the corresponding deforming 
geometry in the embedded space. In this paper, the extrinsic 
definition of manifold deforming dynamics is proposed. 

In practical data mining and machine learning tasks, the data 
manifold is usually represented by a finite data set, which 
consists of discrete samples from the data manifold. Therefore, 
the dynamics of deforming manifold is defined for bounded 
manifold with borders (one simple example is a pack of sea 
surface undulating randomly). Let M denote the deforming 
manifold. p is a point on M. In the deforming process, the 
moving of p is expressed by the change of its coordinates in the 
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embedded space. The embedding of manifold M into Rn is 
homeomorphism. If M is bounded with borders, it corresponds 
to a bounded geometry M in Rn. Suppose M continuously 
deforms in the time interval [0, T]. The corresponding geometry 
also deforms synchronously in Rn. 

In the deforming process, M changes its shape in Rn, and 
each point p on M also changes its position in Rn simultaneously. 
It should be noted that p is a geometric element on M, while its 
position (coordinates in Rn) is a time-variant function zp(t). In the 
model proposed, for each point p on M, there is a vector-valued 
function ݒԦሺ݌,  ሻ. At any time t0, all these vectors constitute aݐ
vector field DM(t0) on M. If ݒԦሺ݌,  :ሻ and DM(t0) satisfyݐ

1. For any point p0 on M, ݒԦሺ݌଴,  ሻ is a continuous vector functionݐ
of time t (the constraint of temporal continuity). 

2. For any time t0, DM(t0) is continuous on M (the constraint of 
spatial continuity on M). 

Then DM(t) is defined as a continuous deforming field, which 
is a time-varying vector field on M. And ݒԦሺ݌,  is defined as the	ሻݐ
deforming vector. DM(t) can be regarded as a specific vector 
bundle defined on M, where there is a one-dimensional vector 
space with ݒԦሺ݌,  ሻ as the base vector on each point p. In theݐ
proposed model, a deforming field DM(t) can determine the 
trajectory of each point p in a deforming process: 

Ԧ௣ݖ݀
ݐ݀

ൌ ,݌Ԧሺݒ  ሺ1ሻ																																					ሻݐ

where zp denotes the coordinates of p in Rn. ݒԦሺ݌,  ሻ is the valueݐ
of DM(t) on point p. ݒԦሺ݌,  ሻ can be physically explained as theݐ
velocity vector of p in th e deforming process. Although 
Equation (1) has the general form of differential equations of the 
first order standard type, ݒԦሺ݌,  ሻ has the constraints of temporalݐ
and spatial continuity, which are necessary in a continuous 
deforming process. And the constraint of spatial continuity on 
M is the key difference between the proposed model and the 
general differential dynamic systems. 

For any point p on M, the solution to Equation (1) gives the 
trajectory of p in Rn in the deforming process. Moreover, at time 
t0, all the points form a geometry representing the current “shape” 
of the manifold. Solving Equation (1) for all the points on M is 
defined as the “deformation integral”, which is expressed in a 
compact form: 

ሻݐሺܯ ൌ නܦ୑ሺ߬ሻ ∙ ݀߬

௧

௢

																										ሺ2ሻ 

where DM(t) is the deforming field, and M(t) is the manifold 
geometry in embedded space at time t. Equation (2) is a compact 
representation of the deforming process under the deforming 
field DM(t). Equation (1) is from the viewpoint of a single point 
on the manifold, while Equation (2) is from the viewpoint of the 
whole manifold. Because the deformation of the whole manifold 
is eventually composed of all the points’ movement, Equation 
(1) explains the actual meaning of Equation (2). Because the 
derivation and integral are inverse operation, Equation (2) can 
be written in another form: 

ሻݐெሺܦ ൌ
ሻݐሺܯ݀

ݐ݀
																																	ሺ3ሻ 

which is defined as the deformation derivative. 

III. AUTONOMOUS DEFORMATION AND TOPOLOGY-PRESERVING 
DEFORMATION 

A. The Autonomous Deformation 

In analogy with the autonomous system in de ferential 
dynamic system, the autonomous deformation is defined here. 
In a deforming field DM(t), if the deforming vector ݒԦሺ݌,  ሻ atݐ
point p on M is only determined by the current “shape” of M and 
the relative position of p on M, the deforming process is defined 
as the autonomous deformation. From a global viewpoint, the 
deforming field at time t is only determined by the manifold 
shape at that time: 

ሻݐெሺܦ ൌ  ሺ4ሻ																										ሻ൯ݐሺܯ൫ܨ

Equation (4) is from the viewpoint of the whole manifold. F is a 
mapping (or functional) that represents the determination of 
DM(t) by M(t). Substitute (4) into (2), the integral form of 
autonomous deformation is obtained as: 

ሻݐሺܯ ൌ නܨሺܯሺ߬ሻሻ ∙ ݀߬

௧

௢

																							ሺ5ሻ 

Similarly, substitute Equation (4) into (3), the differential form 
of autonomous deformation is obtained: 

ሻݐሺܯ݀

ݐ݀
ൌ  ሺ6ሻ																												ሻሻݐሺܯሺܨ

Equation (6) implies that, how the manifold will deform at time 
t (i.e. the deforming field DM(t)) only depends on the manifold 
shape at time t. Equation (5) implies that, if F is g iven, the 
autonomous deformation is only determined by the initial status 
of M (i.e. the manifold initial shape). This is the unique property 
of autonomous deformation, i.e. the self-evolution of the 
manifold without external affection. In spite of the extrinsic 
definition of the autonomous deforming field, it is a ctually 
intrinsic given the mapping F, just like the intrinsic curvature of 
a surface with an extrinsic form of definition. 

B. The Topology-Preserving Deformation 

Among all the possible deforming process of a manifold, the 
most practically important ones are those keeping the manifold’s 
topological structure unchanged. This kind of deforming is 
defined as the topology-preserving deformation. If M keeps its 
topology structure throughout the deforming process, two 
different points p1 and p2 on M will not move to one position in 
Rn at the same time (i.e. different points will not adhere to each 
other). And fragmentation will not happen in a continuous 
region on M. 

Neighborhood is the basis of topological structure [34,35,40]. 
In the proposed model, a convenient way of neighborhood 
definition for points on t he manifold is proposed here. The 
following definition is for the bounded smooth manifold 
mentioned in section II, which is a common situation in practical 
applications. In another word, the dataset only occupies limited 
area in the data space, and the “shape” of the manifold is not 
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extensively complex (i.e. there is no infinitely dense folding on 
the manifold). 

Manifold M corresponds to a high dimensional geometry in 
Rn, and each point p on M has n-dimensional coordinate in Rn. 
In dimension reduction tasks, the initial shape of the data 
manifold M is especially important, because it determines the 
topological structure. The neighborhood relationship between 
any two points on M is judged according to the initial dataset. In 
the deforming process, if the neighborhood relationship between 
any two points keeps the same as that on the initial manifold, the 
topological structure of the manifold can be regarded as 
unchanged. Therefore, here the neighborhood of a point is 
determined according to the initial manifold’s shape M(0). 

The r-neighborhood of point p is defined as the set of points 
on M(0) whose Euclidean distance to p is l ess than r. The 
Euclidean distance is measured in the embedded space Rn, which 
is convenient to compute. For the convenience of later 
discussions, the r-neighborhood is defined as deleted 
neighborhood: 

U௣
௥≝ሼݍ|ݍ, ݌ ∈ ,ሺ0ሻܯ 0 ൏ ,ݍሺݐݏ݅݀	 ሻ݌ ൏ ݎ  ,ሽݎ ൐ 0							ሺ7ሻ 

where dist(q,p) is the Euclidean distance between q and p. 
Because smooth manifold is locally homeomorphic in Rn, there 
exists r with sufficiently small value that makes the above 
definition reasonable. On the initial shape M(0), each point p has 
an r-neighborhood Up

r, which is a patch on M(0). Preserving the 
neighborhood relationship is important for keeping the 
manifold’s topological structure. It is a necessary condition for 
topology-preserving deformation that the neighborhood 
relationship for all the points on M are preserved in the 
deforming process. 

IV. AN AUTONOMOUS DEFORMING FIELD WITH FLATTENING 
EFFECT 

A data vector can be regard as a sample from the data 
manifold. In data analysis applications, data vectors are usually 
of high dimension, such as digital images of high resolution. The 
element number of the data vector is usually not consistent with 
the intrinsic dimension of the data manifold. The data manifold 
usually has a much lower intrinsic dimension (imagine a piece 
of paper is wadded into spitball, which is an embedding into the 
3D space). In many dimension reduction methods, it is necessary 
to estimate the intrinsic dimension of the data manifold. 

From the viewpoint of manifold deformation, nonlinear 
dimension reduction is geometrically equivalent to the flattening 
of the manifold in the embedded space Rn. In such flattening 
process, the original neighborhood relationship between 
manifold points should be preserved, while the non-neighbor 
points should separate as far as possible (Imagine again the 
process of flattening the wadded paper). Inspired by this 
geometrical analogy, an autonomous deforming field is 
proposed, which preserves the original neighborhood 
relationship between data points, while separates non-
neighborhood points far away. The intrinsic dimension of the 
data manifold can also be revealed at the same time. 

The following definition is f or the bounded manifold 
mentioned in section II. Suppose on the initial manifold M(0), a 
point p has a neighborhood Up

r. q is one of p’s neighbor point 

on M(0) (i.e. q∈Up
r), but w is not p’s neighbor point. When t>0, 

M deforms continuously. And the three points p, q, w also move 
in the embedded space (i.e. there coordinates are functions of t: 
p(t), q(t), w(t)). 

In order to flattening the manifold in Rn, an autonomous 
deforming field is defined, which separates non-neighbor points 
while maintain the distance between neighbor points as the 
original. To maintain the distance between neighbor points, an 
“elastic” interaction is d efining between any two neighbor 
points p and q (q∈Up

r): 

ଵܭ ∙
ሻݐԦሺ݌ െ ሻݐԦሺݍ
ሻݐԦሺ݌| െ |ሻݐԦሺݍ

∙ ሺ|݌Ԧሺ0ሻ െ |Ԧሺ0ሻݍ െ ሻݐԦሺ݌| െ  ሺ8ሻ			ሻ|ሻݐԦሺݍ

where K1 is a  constant and K1>0. ݌Ԧሺݐሻ  and ݍԦሺݐሻ  are the 
coordinates (i.e. position vectors) of the two neighbor points at 
time t. |݌Ԧሺ0ሻ െ  Ԧሺ0ሻ| is the initial Euclidean distance between pݍ
and q, while |݌Ԧሺݐሻ െ  ሻ| is the Euclidean distance betweenݐԦሺݍ
them at time t. By such definition, when the two neighbor points 
p and q get far away from each other, the vector of elastic 
interaction has the direction that lets p get closer to q. Otherwise, 
this vector has the direction that separates p from q. Therefore, 
the elastic interaction has the effect of keeping the original 
distance unchanged between neighbor points. 

On the other hand, in order to make the non-neighbor points 
separate from each other, the repelling interaction is defined 
between two non-neighbor points p and w: 

ଶܭ ∙
ሻݐԦሺ݌ െ ሻݐሬሬԦሺݓ
ሻݐԦሺ݌| െ |ሻݐሬሬԦሺݓ

																																		ሺ9ሻ 

where K2 is a constant and K2>0. ݌Ԧሺݐሻ  and ݓሬሬԦሺݐሻ  are the 
coordinates of the two non-neighbor points at time t. The vector 
of repelling interaction has the direction that always separates p 
away from w. 

The deforming vector in Equation (1) is then defined as the 
combination of the above two interactions: 

Ԧ௣ݖ݀
ݐ݀

ൌ ௘ܸሬሬሬԦሺݐሻ+ ௥ܸሬሬሬԦሺݐሻ																														ሺ10ሻ 

where 

	 ௘ܸሬሬሬሬԦሺݐሻ ൌ 

න ଵܭ ∙
ሻݐԦሺ݌ െ ሻݐԦሺݍ
ሻݐԦሺ݌| െ |ሻݐԦሺݍ

∙ ሺ|݌Ԧሺ0ሻ െ |Ԧሺ0ሻݍ െ ሻݐԦሺ݌| െ ሻ|ሻ·dqݐԦሺݍ

௎೛ሺ௧ሻ

 

(11) 

and 

௥ܸሬሬሬԦሺݐሻ ൌ න ଶܭ ∙
ሻݐԦሺ݌ െ wሬሬሬԦሺݐሻ
ሻݐԦሺ݌| െ |ሻݐሬሬԦሺݓ

∙ ݓ݀
ெሺ௧ሻି௎೛ሺ௧ሻ

								ሺ12ሻ 

In Equation (11) and (12), M(t) is the manifold at time t, and Up(t) 
is the area constituted by p’s neighbor points at time t. In the 
integral, dq and dw are the two infinitesimal volume elements 
on M(t), which containing q and w respectively. In Equation (11) 
the integral obtains the overall effect of keeping the original 
distance unchanged between p and its neighbor points. Similarly, 
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in Equation (12) the integral obtains the overall effect of 
separating p away from its non-neighbor points as far as possible. 

V. COMPUTER SIMULATION EXPERIMENTS 
For data manifolds in practical applications, there are usually 

groups of data points, but no analytical expressions. Therefore, 
it is suitable to use numerical computation to study the proposed 
model of deforming manifold. Numerical computation has been 
successfully used in many research areas [41-43]. In this paper, 
numerical simulation is implemented to trace the autonomous 
deforming process under the deforming field of Equation (10). 
The continuous manifold M is spatially discretized into a mesh 
of sample points in Rn. The deforming vector ݒԦሺ݌, ሻݐ  is 
calculated discretely on the mesh, by approximating the integral 
in Equation (11) and (12) with discrete summation. Temporal 
discretization is also implemented for simulating the deforming 
process. For a small time interval Δ, the manifold shape at t+Δ 
is determined by moving each mesh point according to the 
deforming vector on it. In the simulation, the two constants K1 

and K2 in Equation (11) and (12) are 0.1 and 0.0002 respectively, 
with which stable and convergent simulation is achieved. 

Simulation experiments have been carried out on a group of 
typical manifolds. The experimental results for a half circle as 
one-dimensional manifold embedded in R2 are shown in Fig. 1 
and Fig. 2. The radius of the half circle is 69, and the manifold 
is discretized into 129 sample points in the simulation. On the 
initial manifold, the neighborhood radius is set to 3.36. Fig. 1 
demonstrates the deforming field defined by Equation (10) on 
the initial manifold (the half circle). It can be seen that the 
deforming vectors have a tendency of stretching the curve. Some 
intermediate results of the deforming process have been 
recorded in the simulation, which are shown in Fig. 2 as a 
demonstration of the deformation process. The arrow in Fig. 2 
indicates the deformation sequence. Fig. 2 indicates that the 
initial curved manifold is f lattened to a straight line under the 
autonomous deforming field. 

 

 
Fig. 1. The autonomous deforming field on the initial manifold of a half circle 

 

 
Fig. 2. The demonstration of deforming process of a half circle under the autonomous deforming field. (curve A is the initial manifold of a half circle; line E is the 
final deforming result; curve B, C, and D are three intermediate results in the deforming process) 

 

Another simulation experiment is carried out for a manifold 
with more complex shape, a s piral line on the plane. The 
parametric equations of the spiral line is: 

ሻݐሺݔ ൌ ሺݐ ൅ 10ሻ ∙  ሻݐߨሺݏ݋ܿ
ሻݐሺݕ ൌ ሺݐ ൅ 10ሻ ∙  ሻݐߨሺ݊݅ݏ

ݐ ∈ ሾെ1.0,5.0ሿ 
The manifold is discretized into 600 sample points in the 

simulation. On the initial manifold, the neighborhood radius is 

set to 1.2. Fig. 3 demonstrates the deforming field defined by 
Equation (10) on the initial manifold. It can be seen that the 
deforming vectors have a tendency of expanding outwards. 
Intermediate results of deforming have been recorded in the 
simulation, which is shown in Fig. 4 as a demonstration of the 
deformation process. It can be seen that the spiral is gradually 
unfolded, and then gradually flattened under the autonomous 
deforming field of Equation (10). 
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Fig. 3. The autonomous deforming field on the initial manifold of a spiral line 

 

 
(a)                                                  (b)                                                   (c)                                                   (d)   

 
  (e)                                                  (f)                                                    (g)                                                      (h)   

Fig. 4. The demonstration of deforming process of a spiral line under the autonomous deforming field by the intermediate result image sequence (a) to (h)

Simulation experiments have also been done for manifolds 
of higher dimension. The experimental results for the S-curve 
are shown in Fig. 5 to Fig. 8. The S-curve is a 2-D curved surface 
embedded in R3, whose transverse section is a curve of the shape 
“S”. The S-curve is discretized into 360 sample points in the 
simulation, and its discrete mesh is shown in Fig. 5(a). Fig. 6 
demonstrates the deforming field defined by Equation (10) on 
the initial manifold. Fig. 6(b) shows the top view of the initial 
deforming field. It is clear that the vector directions of the 

deforming field have the effect of stretching the curved surface. 
Intermediate results have been recorded in t he simulation of 
deforming, which are shown in Fig. 7 a nd Fig. 8 a s a 
demonstration of the deformation process. These intermediate 
results are shown in two different angles of view: top view (in 
Fig. 8) and common 3D perspective (in Fig. 7). The results 
shows that higher dimensional manifold can also be flattened by 
the proposed autonomous deforming field. Because flattening 
implies dimension reduction, the proposed autonomous 
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deformation mechanism has potential application in practical 
data analysis. 

     
(a) 3D view                                                                            (b) Top view 

Fig. 5 The initial manifold of S-curve 
 

          
                          (a) The deforming field from a 3D view                                                 (b) The deforming field from the top view 

 
Fig. 6 The demonstration of the autonomous deforming field on the initial manifold of S-curve 
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(a)                                                        (b)                                                       (c) 

 
 

 
(d)                                                       (e)                                                       (f) 

 
Fig. 7 The demonstration of S-curve deforming process (3D view) under the autonomous deforming field  (the intermediate result sequence (a) to (f)) 

 

 
(a)                                                       (b)                                                         (c) 

 

 
(d)                                                        (e)                                                       (f) 

 
Fig. 8 The demonstration of S-curve deforming process (top view) under the autonomous deforming field (the intermediate result sequence (a) to (f)) 
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VI. CONCLUSION 
Traditional differential dynamics theory describes the 

movement of single points in t he phase space, which can not 
directly represent the deformation of a whole manifold (i.e. the 
synchronously movement of a set of points under some 
topological constraints). To meet the practical requirement of 
quantitative description of manifold deformation, a model of 
deforming field is proposed, which implements the precise 
mathematical representation of the deforming process. Based on 
the deforming field, the differential and integral forms are 
presented to e xpress the manifold deforming process, which 
provides a new starting point for further quantitative study of 
manifold deformation dynamics. Moreover, the autonomous 
deforming field is proposed as a model of manifold self-
evolution. And a  specific autonomous deforming field with 
flattening effect is defined, which is s imulated by numerical 
computation on computer for some typical manifolds embedded 
in R2 or R3. The simulation results prove the effectiveness of the 
deforming field proposed, and indicate its potential in practical 
data analysis tasks. Future study will be carried out on 
mathematical properties of the deformation derivative and 
integral. The intrinsic property of the autonomous deforming 
field will be studied. Further application of the deforming field 
in practical data analysis (i.e. dimension reduction, feature 
extraction, etc.) will also be investigated. 
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