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Abstract- In this paper, we propose tensor-
based methods for identifying nonlinear Parallel-
Cascade Wiener (PCW) systems. Parameters of
linear subsystems are first estimated using an ap-
proach based on the PARAFAC decomposition of
the associated pth-order Volterra kernel. This ap-
proach consists in applying the Alternating Least
Squares (ALS) algorithm. Then the coefficients
of nonlinear subsystems approximated as poly-
nomials are estimated by mean the least square
sense from the reconstructed output of the linear
subsystems. The proposed parameter estimation
method and its performance are illustrated by
means of simulation results.
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I. Introduction

Many nonlinear models can be represented by a cas-
cade of linear dynamic subsystems with memoryless
(static) nonlinearities, also called block-structured non-
linear models. These types of models have been ex-
tensively studied by many authors during the last two
decades (see [5] for an extensive bibliography). They
play an important role in many fields of application be-
cause of their low complexity that imply a low compu-
tational cost for system identification. Three types of
block-structured nonlinear models are commonly used:
Wiener model (a linear dynamic subsystem followed by
a nonlinear static one), Hammerstein model (the dual of
the Wiener model obtained by reversing the order of the
linear dynamic block and the static nonlinearity), and
Wiener-Hammerstein (constituted of a nonlinear static
subsystem in sandwich between two linear dynamic sub-
systems). A possible generalization of this class of mod-
els gives rise to the parallel-cascade models which con-
sists of combining these simple models in parallel.

This paper is concerned with the study of Parallel
cascade Wiener (PCW) type nonlinear structures. This
models connect different Wiener systems excited by the
same input signal in parallel. They have been success-
fully employed in various areas, including biological sys-
tems [6] and microwave power amplifiers [12].

Several methods have been proposed for identifying
such PCW models. Iterative algorithms have been de-
veloped for PCW systems [9, 15]. This algorithms are
based ,respectively, on the use of one-dimensional slices
of input/residual cross-correlation functions and second-
order input/residual cross-correlation matrix. Such an
approaches does not guarantee a unique representation.
So, a new approach has been proposed in [7] for estimat-
ing a PCW model based on a joint diagonalization of the
associated third-order Volterra kernel. Some works have
also proposed an estimation method that combines the
knowledge obtained by estimating the best linear approx-
imation of a nonlinear system with a dimension reduc-
tion method to estimate the linear time-invariant blocks
present in the model [10].

Large numbers of classical data processing techniques
depend on the representation of vector and matrix forms,
where the vectorization or matricization is much used
on multidimensional data. However, important underly-
ing structure information can be lost during processing.
Over the last years, tensor models have been well pro-
vided as a natural idea for representing systems and data
that involve multiple dimensions. They have been stud-
ied in a various number of areas, such as signal processing
[2, 11], computer vision [14], numerical analysis [1], and
more.

In this paper, we propose tensor-based approach for
identifying PCW systems that are nonlinear with respect
to their parameters. This approach are based on the
PARAFAC decomposition of pth-order Volterra kernel
associated with the system to be identified. This Volterra
kernel that is treated as a symmetric tensor, can be esti-
mated by means of i.i.d. inputs as shown in [8]. By con-
sidering the pth-order Volterra kernel associated with a
PCW system as a tensor, we show that the linear subsys-
tems can be estimated using Alternating Least Squares
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(ALS) algorithm. In a second step, the coefficients of
the nonlinear subsystem modeled as a polynomial are
estimated by means of the RLS algorithm.

The rest of this paper is organized as follows. Section
2 describes the nonlinear PCW system and gives the ex-
pression of the Volterra kernels associated. Tensors and
PARAFAC Decomposition are briefly reviewed in sec-
tion 3. In Section 4, we present tensor-based approaches
for identifying PCW systems. The proposed identifica-
tion method is illustrated by means of some simulation
results in Section 5, before concluding the paper in Sec-
tion 6.

Notations : Scalars, vectors, matrices and high-
order tensors are written as lower-case (a, b, · · · ), bold
lower-case (a,b, · · · ), bold upper-case (A,B, · · · ) and
blackboard (A,B, · · · ) letters, respectively. AT and A+

denote transpose and Moore-Penrose pseudo-inverse of
A, respectively. The vector Ai. (resp. A.j) represent
the ith row (resp. jth column) of A. Scalars ai, ai,j and
ai1,··· ,iN indicate, respectively, the ith element of a, the
(i, j)th element of A and the (i1, · · · , iN )th element of A.
e
(K)
k denotes the kth unit vector of the Euclidean basis

in RK and ∥.∥ is the Euclidean norm. 1N and IN denote
respectively the all ones vector of dimension N and the
identity matrix of order N . The operator vec(.) forms a
vector by stacking columns of its matrix argument, while
unvecI×J(.) is its inverse operator that forms a I×J ma-
trix from its vector argument of dimensions IJ × 1. The
operator diag(.) forms a diagonal matrix from its vector
argument. ◦, ⊗ and ♢ denote, respectively, The outer,
Kronecker, and Khatri-Rao products. For matrices A,
B, C and vector v, we have :

vec(Adiag(v)B) = (BT♢A)v (1)

vec(ACBT ) = (B⊗A)vec(C) (2)

II. PCW models and its associated Volterra
kernels

Fig. 1: Parallel-cascade Wiener model

Let us consider the nonlinear PCW model illustrated
in Figure 1. The output y(.) of this PCW system is
reached from the sum of the outputs yq(.) of the parallel

paths: y(n) =
∑Q

q=1 yq(n). Each path is a Wiener non-
linear system composed of a linear filter subsystem with

impulse response lq(.) and memory Mq and a memory-
less nonlinear subsystem Cq(.) approximated by means
of a finite degree polynomial of degree Pq, with coeffi-
cients cp,q. So, the output of a PCW model is described
by means of the following equations:

y(n)=

Q∑
q=1

Pq∑
p=1

cp,qz
p
q (n)

=

Q∑
q=1

Pq∑
p=1

cp,q

Mq−1∑
i=0

lq(i)u(n− i)

p

(3)

We can note that the PCW system representation is not
linear with respect to its parameters. Instead of estimat-
ing the parameters of each block by using a nonlinear
optimization method, it is more suitable to estimate the
equivalent Volterra model, which is linear in its param-
eters. Indeed, the output of the pth path can be written
as:

y(n) =

Pq∑
p=1

Mq−1∑
i1,··· ,ip=0

hp,q(i1, · · · , ip)
p∏

k=1

u(n− ik) (4)

where hp,q(i1, · · · , ip) denotes the pth order Volterra ker-
nel associated with the pth path, given by:

hp,q(i1, · · · , ip) = cp,q

p∏
k=1

lq(ik), ik = 0, · · · ,Mq − 1(5)

Then, the input-output relationship of the PCW system
is given by:

y(n) =
P∑

p=1

M−1∑
i1,··· ,ip=0

hp(i1, · · · , ip)
p∏

k=1

u(n− ik) (6)

where

hp(i1, · · · , ip) =
Q∑

q=1

cp,q

p∏
k=1

lq(ik), ik = 0, · · · ,M − 1

P = maxq Pq, M = maxq Mq.

III. Tensors and PARAFAC Decomposition

A tensor of n modes (or n-way) is a structure in-
dexed by n variables. For example, a matrix is a two-
way tensor. Let H be a tensor of order N with di-
mensions I1 × I2 × · · · × IN and entries hi1,i2,··· ,in with
ij = 1, 2, · · · , Ij and j = 1, 2, · · · , N .
PARAFAC Decomposition: PARAFAC decomposition
approximates the original tensor H with a model which
can be expressed as a sum of R rank-one tensors:

H =
R∑

r=1

A(1)
.r ◦A(2)

.r ◦ · · · ◦A(N)
.r (7)

where A
(n)
.r is the rth column of the factor matrix A(n) ∈

RIn×R, n = 1, · · · , N . This decomposition can be writ-
ten in the following scalar form:

hi1i2···iN =
R∑

r=1

N∏
n=1

a
(n)
inr

, in = 1, · · · , In. (8)
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a
(n)
inr

being the entries of the factor matrix A(n).
Essentially, for obtaining the PARAFAC decomposition,
we have to solve the following optimization problem:

min
A(n)

∥H−
R∑

r=1

A(1)
.r ◦A(2)

.r ◦ · · · ◦A(N)
.r ∥2F (9)

The most popular formulation for fitting the PARAFAC
decomposition is the Alternating Least Squares (ALS).
The computational complexity of this Algorithm for a
I1 × I2 × · · · × IN tensor and for R components is
O(I1I2 · · · INR) per iteration.

IV. Tensor-based method for PCW systems
identification

A. Estimation of Volterra kernels associated with
PCW models

There are several algorithms for estimating the
Volterra kernel. For cubic systems and pth-order, closed-
form expression are derived in [13] and [8], respectively,
using independent and identically distributed (i.i.d.) in-
put signals. For an arbitrary degree of non-linearity, such
expressions have also been derived for circular inputs [4],
and in the case of a phase shift keying (PSK)-modulated
input as considered in [16].
In this paper, the Volterra kernel associated with the
PCW models can be estimated by means a closed-form
expression like that derived in [8] using i.i.d. inputs.
We can note that the highest order kernels are indepen-
dent from the lower order ones, the contrary being false.
As a consequence, the estimation precision of the third-
order kernel depends on that of the higher-order ones.
Whereas, the proposed identification methods are based
on the use of the fifth-order kernel. In this case we limit
ourselves to estimating only the fifth-order kernel instead
of estimating several kernels (p = 3, 4, 5) as suggested in
[3].
The closed-form expressions of Volterra kernel estimates
have been derived under the following assumptions:

� The input/output signals are ergodic and stationary
at least up to the sixth-order.

� The additive noise is zero-mean and independent of
the input signal.

� The input signal is real-valued, zero-mean, i.i.d.
with a symmetrical probability distribution func-
tion.

For higher-order models (> 5), determining similar ex-
pressions is a tough task that was not yet considered in
the literature.

B. Estimation of linear subsystem

Let define the matrix L ∈ RM×Q containing the im-
pulse response of theQ linear subsystems, i.e., the matrix
with L.q = (lq(0), · · · , lq(M − 1)), q = 1, · · · , Q, and we
formulate the following assumptions [7]:

� A1) L is a full column rank matrix, which denotes
M ≥ Q,

� A2) lq(0) = 1, q = 1, · · · , Q,

� A3) cp,q ̸= 0, ∀q.

For a PCW model, the associated pth-order Volterra ker-
nel can be seen as a pth-order symmetric tensor denoted
by Hp ∈ RM×M×···×M of rank R = Q. It can always be
decomposed as:

Hp =
R∑

r=1

A(1)
.r ◦A(2)

.r ◦ · · · ◦A(p)
.r , (10)

with A(n) ∈ RM×Q, n = 1, · · · , N are the matrix fac-
tors of the PARAFAC decomposition of the tensor Hp.
We get then the following expressions for the PARAFAC
factors and the mode-P unfolded matrix representation
of HP , denoted by Hp ∈ RMp−1×M :

Hp=
(
A(1)♢A(2)♢ · · ·♢A(p−1)

)
A(p)T (11)

=(L♢L♢ · · ·♢L) diag(cp)LT (12)

with A(1) = A(2) = · · · = A(p−1) = L, A(p) = Ldiag(cp)
where cp = (cp,1, · · · , cp,Q)T .
Using equation (1) gives :

vec(Hp)=(L♢L♢L♢L♢L)cp (13)

The LS update of cp is given by :

ĉp=(L♢L♢L♢L♢L)+vec(Hp) (14)

Another matrix unfolding of the kernel tensor is given
by:

H1 = (A(2)♢ · · ·♢A(p))A(1)T (15)

So, we have :

HT
1 = IMA(1)(A(2)♢ · · ·♢A(p))T (16)

Using equation (2), we obtain :

vec(HT
1 )=((A(2)♢ · · ·♢A(p))⊗ IM )vec(A(1))

=(L♢ · · ·♢L♢(Ldiag(cp))⊗ IM )vec(L)(17)

Defining :

Q = (L♢ · · ·♢L♢(Ldiag(cp))⊗ IM (18)

The LS update of L is then given by :

vec(L̂)=Q+vec(HT
1 ) (19)

The ALS algorithm for identifying the PCW system is
summarized in Table 1.

C. Estimation of nonlinear subsystem
After estimating the impulse response coefficients

lq(.), the PCWS model can be presented as:

ŷ(n)=

Q∑
q=1

P∑
p=1

cp,q ẑ
p
q (n) = zT (n)c (20)
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Table 1: ALS algorithm

Given the unfolded matrix H1 and Hp of the tensor Hp

corresponding to the pth-order Volterra kernel associated with
the PCW system,

1) k = 0: initialize L̂0 with random values and L̂01. = 1,

2) k = k + 1,

3) Compute ĉp
k = (L̂k−1♢ · · ·♢L̂k−1)

+vec(Hp),

4) Deduce Q̂k = (L̂k−1♢ · · ·♢L̂k−1♢(L̂k−1diag(ĉp
k)))⊗ IM ,

5) Compute vec(L̂k) = Qk+
vec(HT

1 ), then construct the matrix

L̂k,

6) Return to step 2) until a stop criterion is reached,

7) Normalize L̂ by the equation L̂ = L̂diag(L̂1.)−1.

where ẑq(n) denotes the reconstructed output of the qth

FIR subsystem, i.e., ẑq(n) =
∑M−1

i=0 l̂q(i)u(n − i). By
concatenating the model outputs for n = 1, · · · , N , we
get:

ŷ = Zc (21)

with Z = (ẑ(1) · · · ẑ(N))T , ŷ = (ŷ(1) · · · ŷ(N))T and
c = (c1,1 c2,1 · · · cP,1 · · · c1,Q · · · cP,Q)

T .

The LS estimate of the polynomial coefficients of the
nonlinear subsystem is given by :

ĉ = Z+y. (22)

D. Summary

The proposed identification method is composed of
the three following steps :

1) Estimate the Pth-order Volterra kernel associated
with the PCW system to be identified using input-
output measurements using the method proposed in
[8].

2) Estimate the linear subsystems parameters by
means of an ALS algorithm using the PARAFAC
decomposition of the estimated Volterra kernel in
step (1) (table 1).

3) Estimate the coefficients of the nonlinear subsys-
tems by applying the LS solution 22.

V. Simulations Results

Simulation results were obtained with Mn = 100 dif-
ferent PCW models, with memory M = 3 and nonlinear-
ity degree P = 5. Moreover, B = 10 different additive,
zero-mean, white Gaussian noise sequences were added
to each model output with fixed SNR (Signal-to-Noise
Ratio).

Performances are evaluated in terms of Normalized Mean
Square Error (NMSE) on the output signal (NMSEs),
on the estimated parameters of the linear subsystem

(NMSEl) and of the nonlinear subsystem (NMSEc).

NMSEl=10 log

(
1

Sc

Mn∑
m=1

B∑
b=1

∥L̂m,b − Lm∥22
∥Lm∥22

)
,

NMSEc=10 log

(
1

Sc

Mn∑
m=1

B∑
b=1

∥ĉm,b − cm∥22
∥cm∥22

)
,

NMSEhp
=10 log

(
1

Sc

Mn∑
m=1

B∑
b=1

∥Ĥm,b −Hm∥22
∥Hm∥22

)
,

NMSEs=10 log

(
1

Sc

Mn∑
m=1

B∑
b=1

∥ŝm,b − sm∥22
∥sm∥22

)

where sm denotes the output vector associated with the
mth simulated model, whereas ŝm,b denotes the vector
of reconstructed output using the estimated parameters
L̂m,b and ĉm,b, for the mth simulated model and the bth

run. Ĥm,b denotes the reconstructed fifth-order Volterra
kernel associated with the mth simulated model and bth

noise sequence. Sc denotes the number of runs that con-
verged.
Standard deviations of the parameter estimates for the
mth simulated model is given by :

El=

√√√√ 1

Bc

B∑
b=1

(
L̂m,b − L̂m

)2
, with L̂m =

1

Bc

B∑
b=1

L̂m,b

Ec=

√√√√ 1

Bc

B∑
b=1

(ĉm,b − ĉm)
2
, with ĉm =

1

Bc

B∑
b=1

ĉm,b

where Bc denotes the number of runs that converged for
the mth model.
The input signal was an i.i.d. 6-RMS (Random Mul-
tilevel Sequence, with six levels) signal with length N
({±1,±2/3,±1/3}). To guarantee the i.i.d. property,
the input sequence was designed according to the method
described in [13].

Table 2: NMSEl, NMSEc, NMSEh5
and NMSEs for

different values of SNR (Q = 3,M = 3, P = 5)

SNR= 0dB SNR= 10dB SNR= 40dB

NMSEl (dB) -15.84 -20.60 -56.16

NMSEc (dB) 4.98 -4.62 -38.48

NMSEh5
(dB) -10.10 -19.23 -52.45

NMSEs (dB) -2.78 -10.13 -39.78

Table 2 presents the results obtained with a PCW system
having three branches and an input length N = 21600.
From these simulation results, we can conclude that as
expected, the NMSEs, NMSEh5

, NMSEl and NMSEc

decrease when the SNR increases. We can note also
that the output NMSE corresponds approximately to the
noise level, implying that the simulated PCW model is
well estimated.
We consider different configurations by varying the mem-
ory value M and the pathway number Q. Figure 2 il-
lustrate the NMSEs for two different values of Q and
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Fig. 2: NMSEs for different PCW system configurations

two memory. We can notice that the proposed method
provides good performances. When the memory or/and
the pathway number increases, the performances are de-
graded. This degradation can be repaid by increasing
the data number N , as shown in Figure 2.
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Kibangou’s algoritm(Q=2, M=3)

Kibangou’s algoritm(Q=3, M=3)

Proosed method(Q=3, M=3)

Fig. 3: Comparison with the Kibangou’s algorithm [7]

Figure 3 depicts the output NMSE attained with the
proposed method and the parallel-cascade identification
algorithm in [7]. We can note that, with Kibangou’s
algorithm, when the number of paths increases give a
slight performance improvement. However, the proposed
method widely outperforms the Kibangou’s algorithm
since it takes the fifth-order volterra kernel instead of
the third-order. Proposed method allow to reduce the
computational cost owing to the estimation of only the
fifth-order Volterra kernel without requiring the estima-
tion of the overall Volterra model, and reduce the errors
caused by error propagation from calculating several ker-
nels as in [7].

VI. Conclusion

In this paper, we have proposed a tensor-based
method for identifying the paths of a parallel-cascade
Wiener system. This method is accomplished in three

steps. First, the pth-order kernel of the associated
Volterra model is estimated using input-output measure-
ments. Second, the linear subsystems are estimated by
applying an alternating least square algorithm to the pth-
order Volterra kernel slices associated with the PCW to
be identified. Then, the coefficients of the nonlinear sub-
systems are estimated by means the LS algorithm. The
efficiency of the proposed estimation method has been
illustrated by means of simulation results.
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