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Abstract—Fundamental solutions of space-time fractional dif-
fusion equations can be interpret as probability density functions.
This fact creates a strong link with stochastic processes. Recasting
probability density functions in terms of subordination laws
has emerged to be important to built up stochastic processes.
In particular, for diffusion processes, subordination can be
understood as a diffusive process in space, which is called parent
process, that depends on a parameter which is also random and
depends on time, which is called directing process. Stochastic
processes related to fractional diffusion are self-similar processes.
The integral representation of the resulting probability density
function for self-similar stochastic processes can be related to the
convolution integral within the Mellin transform theory. Here,
subordination formulae for space-time fractional diffusion are
provided. In particular, a noteworthy new formula is derived
in the diffusive symmetric case that is spatially driven by the
Gaussian density. Future developments of the research on the
basis of this new subordination law are discussed.

I. INTRODUCTION

Fractional diffusion processes are processes governed by
diffusion-type equations including fractional differential oper-
ators [1], [2]. In particular, Fractional Calculus has emerged to
be a useful mathematical tool for modelling non-local effects
and then, for what concerns diffusion, to model those phenom-
ena for which the classical local flux-gradient relationship does
not hold and a non-local relationship is required. Since these
difference from classical/normal diffusion, such processes are
referred to as anomalous diffusion processes.

The resulting diffusion process differs from classical diffu-
sion because the probability density function (PDF) of particle
distribution is not Gaussian and because the variance of
particle spreading does not grow linearly in time. Anomalous
diffusion has been experimentally established in nature in
several phenomena, see e.g. [3], [4], [5], [6], [7].

Mellin transform theory has an important role in the study of
space-time fractional diffusion equations especially to derive
solution in terms of the Mellin–Barnes integral representation
[8], [9], [10]. Furthermore, Mellin transform is also intrin-
sically related to probability theory. In fact, the PDF of the

product of two independent random variables is determined
by the Mellin convolution of the two corresponding densities
[9], [11]. The resulting integral formula can be seen also as a
subordination law. The relationship between them is reported.

Hence certain integral formulae for fundamental solutions
of space-time fractional diffusion equation can be read as
subordination laws. Here manipulation of such formulae is
performed with the final aim to obtain a new formula, for
the spatial symmetric case, with the valuable property to be
based on the Gaussian density. And backing to Mellin convo-
lution, suggestions for future research development to generate
stochastic processes by the product of two independent random
variables are addressed.

The paper is organized as follows. In Section II the space-
time fractional diffusion equation is reviewed in detail dis-
cussing the probability density interpretation of the Green
functions and showing solutions and special cases. In Section
III the essential notions and notations concerning Mellin trans-
form are reported and the relationship with subordination laws
highlighted. In Section IV subordination laws for fundamental
solution of space-time fractional diffusion are given and a
new formula for symmetric diffusion is derived whose parent
process is the Gaussian density. Finally, Section V contains
summary, conclusions and future developments.

II. THE SPACE-TIME FRACTIONAL DIFFUSION EQUATION

Space-time fractional diffusion equation is obtained from
the ordinary diffusion equation by replacing the first order
time derivative with the Caputo time-fractional derivative of
order β, i.e. tD

β
∗ , and the second order space derivative with

the Riesz–Feller space-fractional derivative of order α and
asymmetry parameter θ, i.e. xD

α
θ , [8]

tD
β
∗ u(x; t) = xD

α
θ u(x; t) , x ∈ R , t ∈ R+

0 . (1)
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The real parameters α, θ and β are restricted as follows
0 < α ≤ 2 ,

|θ| ≤ min{α, 2− α} ,

0 < β ≤ 1 or 1 < β ≤ α ≤ 2 .

(2)

The Caputo time-fractional derivative tD
β
∗ is defined by its

Laplace transform as∫ +∞

0

e−st
{

tD
β
∗ u(x; t)

}
dt =

sβ ũ(x; s)−
m−1∑
n=0

sβ−1−n u(n)(x; 0+) , (3)

with m− 1 < β ≤ m and m ∈ IN .
The Riesz–Feller space-fractional derivative xD

θ
θ is defined

by its Fourier transform according to∫ +∞

−∞
e+iκx {xDα

θ u(x; t)} dx =

−|κ|α ei(signκ)θπ/2 û(κ; t) , (4)

with α and θ as stated in (2).
In literature the time-fractional derivative is sometimes

considered in the Riemann–Liouville sense, here denoted by
tD

β . Its relationship with the time-fractional derivative in the
Caputo sense is [12]

tD
β
∗ u(x; t) = tD

β u(x; t)− t−β

Γ(1− β)
u(x; 0) , (5)

and equation (1) becomes

tD
β u(x; t) = xD

α
θ u(x; t) +

t−β

Γ(1− β)
u(x; 0) , (6)

with x ∈ R and t ∈ R+
0 . Equation (1) is stated also as

∂u

∂t
= tD

1−β [xDα
θ u(x; t)] . (7)

However, it is possible to show that the fundamental solutions
of (1), (6) and (7) are equal [12].

Solution of (1) can be determined in terms of the funda-
mental solution, or Green function, Kθ

α,β(x; t) as follows

u(x; t) =
∫ +∞

−∞
Kθ

α,β(x− ξ; t)u(ξ; 0) dξ , (8)

with the initial and boundary conditions {u(x; 0) =
δ(x) , ut(x; 0) = 0} when 0 < β ≤ 1 and when 1 < β ≤ 2 a

second initial condition corresponding to ut(x; 0) =
∂u

∂t

∣∣∣∣
t=0

is needed such that two Green functions follow according to
the conditions {u(x; 0) = δ(x) , ut(x; 0) = 0} and {u(x; 0) =
0 , ut(x; 0) = δ(x)}, respectively.

By taking into account the Laplace transform for the Caputo
time fractional derivative (3) and the Fourier transform for
the Riesz–Feller space fractional derivative (4), the composite

Fourier–Laplace transform of the first Green function results
to be ̂̃

Kθ
α,β(κ; s) =

sβ−1

sβ + |κ|α ei(signκ)θπ/2
, (9)

and of the second Green function̂̃
Kθ

α,β(κ; s) =
sβ−2

sβ + |κ|α ei(signκ)θπ/2
. (10)

From (9), for the first Green function it holdŝ̃
Kθ

α,β(0; s) = 1/s and then K̂θ
α,β(0; t) = 1 , (11)

so that the normalization property follows∫ +∞

−∞
Kθ

α,β(x; t) dx = 1 . (12)

Hence it can be interpret as a PDF for particle distribution in
x and evolving in time t. Differently, from (10), for the second
Green function it holdŝ̃

Kθ
α,β(0; s) = 1/s2 and then K̂θ

α,β(0; t) = t , (13)

so that it follows ∫ +∞

−∞
Kθ

α,β(x; t) dx = t , (14)

and the normalization property is not met. The second Green
function (10) emerges to be a primitive (with respect to the
variable t) of the first Green function (9), so that it cannot be
interpreted as a PDF of x evolving in t because it is no longer
normalized [13]. Finally, solely the first Green function can
be considered for diffusion problems.

In general, fundamental solution Kθ
α,β(x; t) algebraically

decreases as |x|−(α+1), thus it belongs to the domain of
attraction of the Lévy stable densities of index α. Moreover,
Kθ

α,β(x; t) self-similarly scales as

Kθ
α,β(x; t) = t−β/αKθ

α,β

( x

tβ/α

)
, (15)

and it meets the following symmetry relation

Kθ
α,β(−x; t) = K−θ

α,β(x; t) , (16)

which allows the restriction of the analysis to x ∈ R+
0 . In

this x-range, i.e. x ∈ R+
0 , the analytical solution of (1)

can be expressed by the following Mellin–Barnes integral
representation [14], [8],

Kθ
α,β(x; t) =

1
αx
×

1
2πi

∫ ω+i∞

ω−i∞

Γ
(

s
α

)
Γ

(
1− s

α

)
Γ(1− s)

Γ
(
1− β

αs
)

Γ(ρ s)Γ(1− ρ s)

( x

tβ/α

)s

ds ,

(17)

where ρ =
α− θ
2α

and ω is a suitable real constant. Solution
(17) can be also expressed in terms of H-Fox function [14],
[15].
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The special cases of space-time fractional diffusion equation
(1) are the following.

The space-fractional diffusion equation, i.e. 0 < α < 2 and
β = 1, so that when x ∈ R+

0

Kθ
α,1(x; t) = Lθ

α(x; t) = t−1/αLθ
α

( x

t1/α

)
, (18)

where Lθ
α(x) is the class of strictly stable densities with

algebraic tail decaying as |x|−(α+1) and infinite variance.
Moreover, a stable PDF with 0 < α < 1 and extremal value
of the asymmetry parameter θ are one-sided with support R+

0

if θ = −α and R−0 if θ = +α.
The time-fractional diffusion equation, i.e. α = 2 and 0 <

β < 2, so that when x ∈ R+
0

K0
2,β(x; t) =

1
2
Mβ/2(x; t) =

1
2
t−β/2Mβ/2

( x

tβ/2

)
, (19)

where Mν(x), 0 < ν < 1, is the M-Wright/Mainardi density
[16], [17], [18], [19], [20], [21], [18], which has stretched
exponential tails and finite variance proportional to tβ . Since
α = 2, according to (2), it holds θ = 0, then the PDF is
symmetric and the extension to x ∈ R is obtained by replacing
x with |x| in (19).

The neutral fractional diffusion equation, i.e. 0 < α = β <
2, whose solution can be expressed in explicit form by non-
negative simple elementary functions [22], [8], so that when
x ∈ R+

0

Kθ
α,α(x; t) = Nθ

α(x; t)

=
t−1

π

(x/t)α−1 sin[π
2 (α− θ)]

1 + 2(x/t)α cos[π
2 (α− θ)] + (x/t)2α

. (20)

Recently Luchko [23] has considered and analyzed the case
1 < α < 2 and θ = 0 of (20). Moreover, PDF (20) with 0 <
α < 1 is emerged in the study of finite Larmor radius effects
on non-diffusive tracer transport in a zonal flow [24] as well
as numerically evidenced in non-diffusive chaotic transport by
Rossby waves in zonal flow [25].

The classical diffusion equation, i.e. α = 2 and β = 1,
whose Gaussian solution is recovered as limiting case from
both the space-fractional (α = 2) and the time-fractional (β =
1) diffusion equation, so that when x ∈ R+

0

K0
2,1(x; t) = L0

2(x; t) =
1
2
M1/2(x; t)

= G(x; t) =
e−x2/(4t)

√
4πt

. (21)

The last special case is the limit case of the D’Alembert
wave equation, i.e. α = β = 2, such that when x ∈ R+

0 it
holds

K0
2,2(x; t) =

1
2
M1(x; t) =

1
2
δ(x− t) . (22)

III. MELLIN CONVOLUTION AND SUBORDINATION LAW IN
STOCHASTIC PROCESSES

A. The Mellin transform

Main definitions and formulae of Mellin transform are here
reminded for completeness with what follows. The interest

reader can find exhaustive presentation of the Mellin transform
theory, for example, in the book by Marichev [26] where
connections with Fourier and Laplace transforms are also re-
ported. However, the theory of Mellin transform independently
of Laplace or Fourier transforms was introduced by Butzer and
Jansche [27], [28].

Let f(x) ∈ Lloc(IR+), then the Mellin transform f∗(s),
s ∈ IC, of a sufficiently well-behaved function f(x), x ∈ IR+,
is defined as

f∗(s) =
∫ +∞

0

f(x)xs−1 dx , s ∈ IC . (23)

Formula (23) defines the Mellin transform in a vertical strip
in the s-plane whose boundaries are determined by the analytic
structure of f(x) as x→ 0+ and x→ +∞. When

f(x) =

 O (x−ω1−ε) as x→ 0+ ,

O (x−ω2−ε) as x→ +∞ ,
(24)

then, for every (small) ε > 0 and ω1 < ω2, integral (23)
converges absolutely and defines an analytic function in the
strip ω1 < Re{s} < ω2, i.e. the strip of analyticity of f∗(s).

The inversion formula follows directly from the inversion
formula for the bilateral Laplace transform, i.e.

f(x) =
1

2πi

∫ ω+i∞

ω−i∞
f∗(s)x−s ds , ω1 < ω < ω2 , (25)

when f(x) is continuous.
Denoting by M←→ the juxtaposition of a function f(x), x ∈

IR+, with its Mellin transform f∗(s), s ∈ IC, some important
properties of Mellin transform are

xa f(x) M←→ f∗(s+ a) , a ∈ IC , (26)

f(xb) M←→ 1
|b|
f∗(s/b) , b ∈ IC , b 6= 0 , (27)

f(cx) M←→ c−s f∗(s) , c ∈ IR+ , (28)

from which it follows

xa f(cxb) M←→ 1
|b|
c−(s+a)/b f∗

(
s+ a

b

)
. (29)

Differently from Fourier and Laplace transforms, Mellin con-
volution formula does not concern variable shifting but scaling
and it emerges to be

h(x) =
∫ ∞

0

f

(
x

ξ

)
g(ξ)

dξ

ξ

M←→ f∗(s) g∗(s) = h∗(s) . (30)

In general, formula (30) can be rewritten for γ > 0 as

h(x) =
∫ ∞

0

f

(
x

ξγ

)
g(ξ)

dξ

ξγ

M←→ f∗(s) g∗[γ(s− 1) + 1] = h∗(s) . (31)

Formula (31) embodies the operative tool of the following
analysis.
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B. Subordination law

A stochastic process X(t) is called subordinated process if
it is obtained by a stochastic process Y (τ), τ ∈ IR+

0 , by the
randomization of the parameter τ according to a process T (t)
with non-negative independent increments [29]. The resulting
process X(t) = Y (T (t)) is said to be subordinated to Y (t),
that is called the parent process, and to be directed by T (t),
that is called the directing process.

The subordinated process X(t) = Y (T (t)) emerges to be
governed by a spatial PDF of x evolving in time t, i.e. ψ(x; t),
determined by the subordination law

ψ(x; t) =
∫ ∞

0

q(x; τ)ϕ(τ ; t) dτ , (32)

where q(x; τ) is the spatial PDF of x depending on the
parameter τ and corresponding to the process Y (τ), ϕ(τ ; t)
is the PDF underlying the process T (τ) with non-negative
independent increments and depending on the parameter t.

Assuming self-similarity for the parent process Y (τ) then
it holds

q(x; τ) = τ−γ q
( x

τγ

)
, γ > 0 , (33)

and formula (32) reads

ψ(x; t) =
∫ ∞

0

q
( x

τγ

)
ϕ(τ ; t)

dτ

τγ
, γ > 0 . (34)

Moreover, let Z1 and Z2 be two real independent random
variables with PDFs p1(z1), z1 ∈ IR, and p2(z2), z2 ∈ IR+

0 ,
respectively. From theory of probability it follows that the joint
probability p(z1, z2) is

p(z1, z2) = p1(z1) p2(z2) . (35)

Introducing the change of variables z1 = z/λγ ,

z2 = λ ,
(36)

whose Jacobian equals 1/λγ , it follows that

p(z, λ) dz dλ = p1

( z1
λγ

)
p2(λ)

dλ

λγ
dz , (37)

and integrating in dλ the PDF of Z = Z1Z
γ
2 finally turns out

to be

p(z) =
∫ +∞

−∞
p1

( z

λγ

)
p2(λ)

dλ

λγ
. (38)

When γ = 1 formula (38) corresponds to Mellin convolution
integral (30) and in general, when γ 6= 1, it is equal to
(31) proving the fact that Mellin convolution is related to the
PDF resulting from the product of two independent random
variables.

Clearly, by making the change of variables z = x t−γΩ and
λ = τ t−Ω and by setting τ−γp1(x/τγ) ≡ τ−γq(x/τγ) and
t−Ωp2(τ/tΩ) ≡ ϕ(τ ; t), from (38) formula (34) is recovered
and it holds t−γΩp(x/tγΩ) ≡ ψ(x; t).

Hence, the stochastic process X(t) = Y (T (t)) follows the
same one-point one-time PDF of the process X = X1X

γ
2 .

Then for a given diffusion equation, a stochastic process
corresponding to the Green function can be generated by
the product of two independent random variables distributed
according to the PDFs involved in the subordination law.

This approach to provide stochastic processes has been
recently discussed by the author and collaborators [30]. In
particular this method has been introduced to develop self-
similar stochastic processes with stationary increments fol-
lowing a method proposed by Mura [31] to derive the so-
called generalized grey Brownian motion [32], [33]. Actually,
the generalized grey Brownian motion has been shown to be
related to the Green function of the Erdélyi–Kober fractional
diffusion [34], [35], [36].

IV. SUBORDINATION LAWS FOR THE SPACE-TIME
FRACTIONAL DIFFUSION

A first valuable subordination-type formula for Kθ
α,β(x; t)

was derived by Uchaikin & Zolotarev [37], [38], i.e.

Kθ
α,β(x; t) =

∫ ∞

0

Lθ
α(x; (t/y)β)L−β

β (y) dy , (39)

and, by putting t/y = ξ1/β , it becomes [8]

Kθ
α,β(x; t) =

∫ ∞

0

Lθ
α(x; ξ)L−β

β (t; ξ)
t

β ξ
dξ . (40)

Further important subordination formulae were derived in
literature. A practical method is the following. Noting the close
relationship between Mellin–Barnes integral representation of
fundamental solutions (17) and Mellin inversion formula (25),
by splitting Mellin transform of Green functions in two known
Mellin transforms then subordination laws can be derived by
using Mellin convolution formula (30, 31) [8], [9], [11]. The
same method was used also to obtain a Gaussianization of
Lévy noise in signal filtering [39].

In particular, it is reported that when 0 < β ≤ 1 it holds
[8, equation (6.16)]

Kθ
α,β(z) = α

∫ ∞

0

ξα−1Mβ (ξα) Lθ
α(z/ξ)

dξ

ξ
, (41)

and when 0 < β/α ≤ 1

Kθ
α,β(z) =

∫ ∞

0

Mβ/α(ξ)Nθ
α(z/ξ)

dξ

ξ
. (42)

Applying the changes of variable ξ = τ1/α/tβ/α and ξ =
τ/tβ/α in (41) and (42), respectively, and replacing z with
x/tβ/α, when 0 < β ≤ 1 it follows [8], [9],

t−β/αKθ
α,β

( x

tβ/α

)
=∫ ∞

0

τ−1/αLθ
α

( x

τ1/α

)
t−βMβ

(τ
β

)
dτ , (43)

and when 0 < β/α ≤ 1

t−β/αKθ
α,β

( x

tβ/α

)
=∫ ∞

0

τ−1Nθ
α

(x
τ

)
t−β/αMβ/α

( τ

tβ/α

)
dτ , (44)
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or analogously when 0 < β ≤ 1 [8], [9],

Kθ
α,β(x; t) =

∫ ∞

0

Lθ
α(x; τ)Mβ(τ ; t) dτ , (45)

and when 0 < β/α ≤ 1

Kθ
α,β(x; t) =

∫ ∞

0

Nθ
α(x; τ)Mβ/α(τ ; t) dτ . (46)

The symmetric case, i.e. θ = 0, of formula (45) was previously
derived by Saichev & Zavlasky [22]. Moreover, combining
(40) and (45) for 0 < β ≤ 1, with τ , t ∈ IR+

0 , it follows the
identity [8]

L−β
β (t; τ)

t

β τ
= Mβ(τ ; t) , (47)

and by using self-similarity properties

L−β
β

(
t

τ1/β

)
t

β τ1/β+1
=

1
tβ
Mβ

( τ
tβ

)
, (48)

with 0 < β ≤ 1 and τ , t ∈ IR+
0 .

Since Lθ
α, Mν and Nθ

α are special cases of Kθ
α,β , see Section

II, subordination formulae (45) and (46) can be restated also
in terms of Kθ

α,β(x; t) only, after the opportune choice of
parameters [8], [9]. In fact when 0 < β ≤ 1

Kθ
α,β(x; t) = 2

∫ ∞

0

Kθ
α,1(x; τ)K

0
2,2β(τ ; t) dτ , (49)

and when 0 < β/α ≤ 1

Kθ
α,β(x; t) = 2

∫ ∞

0

Kθ
α,α(x; τ)K0

2,2β/α(τ ; t) dτ . (50)

Formula (45), or the analog ones, shows that the solution
of the space-time fractional diffusion equation (1) can be
expressed in terms of the solution of the space-fractional
diffusion equation of order α, i.e. Kθ

α,1(x; t) = Lθ
α(x; t), and

of the solution of the time-fractional diffusion equation of
order 2β, i.e. K0

2,2β(τ ; t) = Mβ(τ ; t)/2, τ ∈ R+
0 . Moreover,

formulae (45) and (46), or the analog ones, by involving non-
negative functions allow the PDF interpretation of Kθ

α,β(x; t).
Furthermore, it is worth-noting to remark that formula (46),
or the analog ones, is fundamental to extend such probability
interpretation to the range 1 < β ≤ α ≤ 2.

By using (45) a new subordination law for the space-
time fractional diffusion can be derived. In fact, it is well
known that the following subordination formula for Lévy
stable density holds [29], [9], [11],

Lθ
α(x; t) =

∫ ∞

0

Lγ
η(x; ξ)L−ν

ν (ξ; t) dξ , (51)

where α = ην, θ = γν and

0 < α ≤ 2 , |θ| ≤ min{α, 2− α} , (52)

0 < η ≤ 2 , |γ| ≤ min{η, 2− η} , 0 < ν ≤ 1 . (53)

Hence, inserting (51) into (45) gives

Kθ
α,β(x; t) =

∫ ∞

0

{∫ ∞

0

Lγ
η(x; ξ)L−ν

ν (ξ; τ)dξ
}
Mβ(τ ; t)dτ ,

=
∫ ∞

0

Lγ
η(x, ξ)

{∫ ∞

0

L−ν
ν (ξ; τ)Mβ(τ ; t) dτ

}
dξ , (54)

where the exchange of integration is allowed by the fact that
the involved functions are normalized PDFs. Finally, using
again (45) to compute the integral into braces in (54), when
0 < β ≤ 1, the following new subordination law is obtained

Kθ
α,β(x; t) =

∫ ∞

0

Lγ
η(x; ξ)K−ν

ν,β(ξ, t) dξ , (55)

with α = ην, θ = γν and the same restrictions stated in (52)
and (53) for the values of parameters.

In the particular case η = 2 and γ = 0, so that ν =
α/2 and θ = 0, a Gaussian subordination follows. In fact

L0
2(x; t) = G(x; t) =

e−x2/(4 t)

√
4π t

so that formula (55) becomes

K0
α,β(x; t) =

∫ ∞

0

G(x; ξ)K−α/2
α/2,β(ξ; t) dξ , (56)

with 0 < α ≤ 2 and 0 < β ≤ 1.

V. CONCLUSION

In the present paper fundamental solutions of space-time
fractional diffusion equations have been analysed. In par-
ticular, by using Mellin–Barnes integral representation and
Mellin convolution, integral formulae can be derived that may
be understood as subordination laws. It is well known that
Mellin convolution gives the integral representation of the
PDF resulting from the product of two independent random
variables. Then subordination laws suggest how to built up
stochastic processes by using the product of two independent
variables that follows a desired one-point one-time PDF.

Manipulation of literature formulae has been performed
with the aim to obtain a new subordination-type formula
for space-time fractional diffusion. The derived new formula,
when reduced to the case of spatial symmetric diffusion,
has emerged to be based on the Gaussian density. That is a
valuable property.

In fact, the derived formula proves that stochastic processes,
whose one-point one-time PDF is solution of the symmetric
space-time fractional diffusion equation, can be generated by
the product of a Gaussian distributed motion and an indepen-
dent positive random variable with specified PDF. The leading
role of the Gaussian motion is remarkable even because it
is a very well studied process and largely suitable for the
simulation of trajectories. In particular because self-similar
with stationary increments and characterized by solely the first
and the second moments.

To conclude, the derived subordination formula is the basis
for future development of a self-similar stochastic process with
stationary increments to model space-time fractional diffusion
in the spatial symmetric case.
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