
  

I. INTRODUCTION 
ANCER tumour development inside a healthy tissue is an 
extremely complicated phenomenon that has drawn great 
multidiscipline scientific interest over the last century. A 

cancer tumour is a cell colony that grows, invading a healthy 
host tissue. Roughly speaking, it consists of cells that consume 
nutrients and proliferate many times before they die out of 
programmed death, called apoptosis or out of lack of nutrients, 
called necrosis. As a tumour grows, many different interrelated 
procedures take place, such as nutrient diffusion from the 
surrounding into the tumour, cell proliferation when the 
nutrient is enough and growth inhibition when either the 
nutrient is insufficient or an inhibitory substance is present. 
Supplementary, we may refer to several other processes such 
as cell death or disintegration, elastic interactions between the 
tumour tissue and the healthy tissue, as well as inner pressure 
effects. As the tumour develops it enjoys an avascular phase 

that corresponds to the stages right after tumorigenesis and 
ends with a steady state, where the tumour’s volume gain, due 
to the new cancerous cells birth, balance the volume loss from 
the cells’ death and disintegration. As the tumour’s evolution 
proceeds, new phenomena, as angiogenesis, take place and the 
vascular phase begins, where the tumour develops a vascular 
net around it that provides the tumour cells with limitless 
nutrient supply and also it permits metastasis. As the present 
work focuses on the avascular phase on tumour evolution, we 
avoid presenting details on the proceeding phases, which can 
be found in the literature [1,2]. 
 Mathematical modeling of avascular tumours has offered a 
great contribution in understanding the mechanisms involved 
with tumour growth. Since the initial construction of the basic 
analytical formulation [3,4], many mathematical models have 
been developed that investigate several aspects of tumour 
growth [1,5]. During the steady state, the avascular tumour is 
bounded in a sphere with an approximate diameter of 2mm. 
This feature justifies the consideration of spherical tumours in 
most of the related works, since in such small lengths, scale 
deviations from a spherical symmetry are not considered 
quantitatively significant. Moreover, tumours grown in vitro 
form spherical aggregates [3–7]. However, the theoretical and 
experimental analysis viewed in [8,9] has revealed that non–
symmetric tumours may occur in a confined surrounding as a 
result of the pressure effects on the growing tissue. Such 
qualitative features that need to be addressed when the non 
symmetrical tumour growth is introduced, are reported in the 
[8–12] for several interesting cases of different geometries. 
 In this work, we study the evolution of the exterior tumour 
boundary, where the cancer colony is assumed to follow a 
prolate spheroidal structure. Within this frame, we search for 
the exact exterior conditions that can support such a model and 
secure its compatibility with both the physics and the 
geometry. In addition to most of the relative works that 
consider homogeneous exterior conditions in an infinite 
environment, we investigate the impact, on the tumour’s 
evolution, of a transversally isotropic pressure field imposed 
from the immediate surrounding tissue on the growing tumour. 
It turns out that the nutrient field should be inhomogeneous 
and that only a special type of inhomogeneity is compatible 
with the particular evolution, under such pressure assumption. 
Since the evolution of the tumour depends on the balance 
between the enhancement and the inhibition of the cell 
proliferation which depends mainly on the available nutrient, 
on the present inhibitors and on the pressure impact, it is 
important to have an accurate mathematical model for the 
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determination of those parameters in the interior of the tumour 
structure. 
 To this purpose we consider a prolate spheroidal tumour 
that grows under the basic principles assumed in [4]. The 
tumour and the surrounding behave as incompressible fluids of 
different densities. The tumour receives nutrients by diffusion 
from its surrounding according to Fick’s law, while the 
motility of the tumour cells is governed by a modification of 
Darcy’s law. Our model concerns a fully developed tumour 
consisted of four regions, formed with respect to the nutrient 
and the inhibitor concentration levels. The dead cell debris 
form a necrotic core covered by a layer occupied by quiescent 
cells that do not have enough nutrient to proliferate. In the next 
layer the cells are also quiescent, but this is due to high 
inhibitor levels, even though the nutrient present is adequate to 
support proliferation. In the exterior tumour layer the nutrient 
concentration is high enough and the inhibitor concentration is 
low enough so that the cells there proliferate. All parts of the 
fully developed tumour are characterized by the same diffusion 
constant, while a physical interpretation detailed described in 
[11] allows us to work in the steady state conditions, since the 
diffusion time scale is significantly shorter than the growth 
time scale. 
 When the cancer tumour is avascular, the nutrient 
concentration, denoted by σ , is the primary parameter. The 
other two basic parameters of physical growth are the inhibitor 
concentration β  and the pressure field P . To this end, we 
denote by σ ∞  the nutrient supply provided by the surrounding 
tissue and by P∞  the pressure field imposed, in a form that 
attributes the characteristics of a transversally isotropic 
medium. Therein, cell life is sustained if nσ σ ∗> , while cell 
proliferation is possible if both pσ σ ∗>  and β β ∗<  hold, 

where nσ ∗ , pσ ∗  and β ∗  are critical concentration values, which 
are characteristic of the host tissue. Then, the mathematical 
formulation of the nutrient, the inhibitor and the pressure field 
consists of boundary value problems joint together in a non–
linear ordinary differential equation, which describes the 
tumour evolution. The analytical manipulation of the Poisson’s 
and the Laplace’s partial differential equations in combination 
with the application of appropriate boundary conditions at 
every compartment’s interface, in order to obtain all the 
aforementioned fields, is mostly based on classical analytical 
techniques mainly drawn from references [13,14]. 
 In section II the prolate spheroidal geometry of our model 
is postulated and the avascular tumour’s domains with their 
boundaries are strictly defined. The corresponding boundary 
value problems in the prolate spheroidal coordinate system are 
stated in sections III and IV along with their implementation. 
In details, the analytical solution to obtain the nutrient and the 
inhibitor concentration is included in section III, while in 
section IV we derive the pressure field. In section V the 
evolution equation of the tumour’s exterior boundary is 
provided and the conditions, which secure self–consistency of 
the mathematical problem, are obtained. These conditions 
provide one of the paper’s main results on supporting a prolate 
spheroidal avascular growth. In addition, section VI is devoted 

to a geometrical reduction of the results drawn in this work 
into special cases and the corresponding spherical model in 
order to obtain the already known results for the spherical 
case. Finally, in section VII there is an outline of our work, 
which recapitulates the main points as a brief conclusion. 

II. STATEMENT OF THE PROBLEM 
 Let us consider a fully developed avascular tumour that 
grows maintaining all its boundary surfaces as confocal prolate 
spheroids. Therefore, given the fixed positive number 0c > , 
which denotes the semifocal distance of the prolate spheroidal 
system, we set the transformed prolate spheroidal coordinates 

( ), ,τ ζ φ  with semi–axes 2
1 2 1a a c τ= = −  and 3a cτ= , which 

are connected to the Cartesian coordinates ( )1 2 3, ,x x x=r  via 
the relations [13]  
 2 2

1 1 1 cosx c τ ζ φ= − − , (1) 

 2 2
2 1 1 sinx c τ ζ φ= − −  (2) 

and 
 3x cτζ= , (3) 
where the corresponding variables run within the intervals 

1τ ≥ , [ ]1,1ζ ∈ −  and [ )0,2φ π∈ . 
 For such ζ  and φ , the tumour’s compartments are defined 
so as to correspond to successive intervals of the prolate 
variable τ . In such terms, the tumour consists of a necrotic 
core nΩ , defined for every [ )1, nτ τ∈ , where 0 nσ σ ∗< < , 

surrounded by a quiescent layer qΩ , where ( ),n qτ τ τ∈  that is 
occupied by hypoxic cells, which are alive, but are not able to 
proliferate, since 0 n pσ σ σ∗ ∗< < < . In the subsequent layer 
there is enough nutrient to support proliferation but there is too 
much inhibitor concentration present to allow division, namely 

p−
Ω , for ( ),q pτ τ τ

−
∈ . In the next confocal layer denoted as 

p+
Ω , for ( ),p pτ τ τ

− +
∈  cell proliferation takes place, since 

pσ σ ∗>  and β β ∗< . Finally, the compartment of the normal 

host tissue eΩ  with ( ),p eτ τ τ
+

∈  is strongly affected by the 
cancerous mass growth. The interfaces between the successive 
compartments are denoted by jS  for , , ,j n q p p= − + . On the 
exterior surface eS , the surrounding provides nutrient  in the 
general form 

 ( ) ( ) ( ),
0

l e
l

e lPσ τ ζσ
∞

∞
=

∞ = ∑r  for every [ ]1,1ζ ∈ −  (4) 

and impose a pressure field 
 ( ) ( ) ( )2P p 1 1e e aτ ζ∞ ∞

 = + − r  for every [ ]1,1ζ ∈ − , (5) 

where the nutrient parameters ( ),l eσ τ∞  for 0l ≥  and the 

pressure parameter ( )p eτ∞  are subject to the exterior 
conditions. The constant 0a >  adapts the exterior pressure in 
a form that attributes the special characteristics of the prolate 
spheroidal tumour. Here, the functions lP  for 0l ≥ , stand for 
the Legendre functions of the first kind [14]. 
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 Our goal is the solution of proper boundary value problems 
within the aforementioned domains, in order to obtain the 
basic fields, i.e. the nutrient and the inhibitor concentration, as 
well as the pressure field in a closed analytical form in terms 
of the data (4) and (5). Once done, we proceed to the evolution 
equation of the tumour’s exterior boundary. 

III. NUTRIENT AND INHIBITOR CONCENTRATION 
 As both the nutrient and the inhibitor diffuse inward to or 
outward from the tumour, respectively, their distribution is 
described by standard parabolic partial differential equations, 
as it is shown in details in [11]. Though, it is a common 
assumption [3,4] that as the diffusion time scale is significantly 
shorter than the growth time scale, the chemicals maintain a 
diffusive equilibrium state. Therein, the partial differential 
equations for the nutrient and for the inhibitor concentration, 
become 

 ( ) jσ γ∆ =r  for every j∈ Ωr , , , , ,j n q p p e− +=  (6) 
and 

 ( ) jpβ∆ =r  for every j∈ Ωr , , , , ,j n q p p e− += , (7) 
respectively, where each physical constant jγ  and jp  denotes 
the consumption rate, or production rate, as the case may be, 
normalized by the well–known diffusion constants kσ  and kβ , 
respectively, at the corresponding region. 
 Here, we have assumed that as long as the cell remains in a 
certain phase of its cycle, its needs in nutrients are unaltered, 
no matter the availability on them. Therefore, we may suggest 
that all cells occupying the same tumour region have the same 
constant consumption rate, while the transmission from one 
region to another results to a discontinuous and instant change 
in the consumption rate, modeled by means of a step function. 
The same argumentation is followed for the inhibitor. In 
particular, the nutrient diffuses inward to the tumour and it is 
consumed at a rate jγ  that depends on the vital state of the 
cells and reflects the corresponding phase of the cell cycle, 
while, on the contrary, the inhibitor diffuses outward to the 
tumour and it is produced at a rate jp . Obviously, 0nγ =  as 

nΩ  is occupied by necrotic debris and 0qγ ≠ , since the cells 
in qΩ  are quiescent but alive. On the other hand, it is valid 
that :p p p qγ γ γ γ

− +
= = ≥ , since the cells in both p−

Ω  and p+
Ω  

are in a more active state and, finally, e qγ γ≥  but eγ  can be 
either grater or lower than pγ  depending on the kind of the 
healthy tissue in which the tumour grows. Probably, the 
suggestion of e pγ γ≤  has a physical reasoning due to the 
greater demands of the much longer proliferation phase of the 
cancerous cell cycle compared to the normal cell cycle. 
However, without loss of generality and in order to make our 
calculations simpler, we assume that 0eγ = . Under similar 
physical considerations as previously stated, we may refer to 
the inhibitor’s physical constants and claim that 0np ≠  and 

:q p p Lp p p p
− +

= = = , while 0ep = . Here, we complete with 
the position of the partial differential equations. 

 Both the nutrient and the inhibitor fields are regular at zero 
and continuous on each jS  for , , , ,j n q p p e− +=  as well. Their 
normal derivatives must be also continuous on each boundary 
[11]. In terms of the outward unit normal vector τ̂  and by 
definition [13] of the τ̂ –directional derivative in the prolate 
spheroidal coordinates, which reads as 

 

2

2 2

1ˆ
c

τ
ττ ζ

− ∂
⋅∇ =

∂−
τ  for [ ]1, eτ τ∈  and [ ]1,1ζ ∈ − , (8) 

it is readily seen that the boundary conditions to be satisfied 
for every [ ]1,1ζ ∈ −  and [ )0, 2φ π∈  yield 

 ( ) ( ), , , ,i jσ τ ζ φ σ τ ζ φ=  with , , , , ,i j n q p p e− +=  (9) 
and 

 
( ) ( ), ,, , ji

σ τ ζ φσ τ ζ φ
τ τ

∂∂
=

∂ ∂
 with , , , , ,i j n q p p e− +=  (10) 

for the nutrient concentration, while 

 ( ) ( ), , , ,i jβ τ ζ φ β τ ζ φ=  with , , , , ,i j n q p p e− +=  (11) 
and 

 
( ) ( ), ,, , ji

β τ ζ φβ τ ζ φ
τ τ

∂∂
=

∂ ∂
 with , , , , ,i j n q p p e− +=  (12) 

for the inhibitor concentration, provided that always j iτ τ> . 
Conditions (9) and (10) are supplemented by the nutrient 
supply (4), i.e., 

 ( ) ( ) ( ),
0

, , l e
l

e lPσ τ ζσ τ ζ φ
∞

∞
=

= ∑  for every [ ]1,1ζ ∈ − . (13) 

Moreover, on the boundaries nS  and qS  the critical values are 
met, a fact that will be especially useful in Section V. 
 Applying the standard method of separation of variables in 
every compartment Ω j  for , , , ,= − +j n q p p e , we solve the 
Laplace’s and the Poisson’s equations (6)–(7) and we perform 
some tedious but straightforward calculations, which are based 
on the proper application of the aforementioned boundary 
conditions (9)–(13 The results are obtained in a closed 
compact fashion in terms of the Heaviside function 

 ( )
1,

0,
j

j
j

H
τ τ

τ τ
τ τ

≥− =  <
 with , , ,j n q p p− +=  (14) 

and accordingly to the notation for , , , , ,j k n q p p e− +=  and 
, 0,1, 2,...l m = , provided by 

 ( ) ( ) ( ) ( ) ( ), ,
0, 0,:l m l m

k k l m k l m kE E P Q Q Pτ τ τ τ τ′ ′= = −  (15) 
and 
 ( ) ( ) ( ) ( ) ( ), ,

0, 0,:l m l m
k k l m k l m kW W P Q P Qτ τ τ τ τ′ ′= = − , (16) 

where 
 ( ), ,

, 0,:l m l m
j k k jE E τ=  and ( ), ,

, 0,:l m l m
j k k jW W τ= , (17) 

written in view of the Legendre functions of the first lP  and of 
the second lQ  kind [14]. Let us notice that the prime denotes 
derivation with respect to the argument, while all the fields are 
taken at ( ), ,τ ζ φ=r  with [ )1, eτ τ∈ , [ ]1,1ζ ∈ −  and [ )0, 2φ π∈ . 
 Then, the nutrient concentration yields 
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( )
( ) ( ) ( ) ( )

( )
( )
( )

2 2,02,0
2,, 2

0
0 00 09 q

qq qn n n
e

n nq q

c PWW P
Q

Q QQ Q
γ

ττ
σ τ

τ ττ τ
=

   ′′   − + −  ′ ′′ ′    
r

            
( ) ( ) ( )

( )
( )

( )
( )

2 02 0
22

0
0 00 0

p

,,
pqp ,pq ,q

e
q qp p

PPWW
Q

Q QQ Q
γ

ττ
τ

τ ττ τ
++ +

+ +

  ′′   + − + −   ′ ′′ ′   

   ( ) ( )
( )

( )
2

2

2

2,22,22,2
,,,

22,2 2,2 2,2
, , ,9 e

e pe qe n
q q p p

n n q q p p

Pc
P

EEE
P

W W W
τ

ζ
τ

γ γ γ γ +

+ +

−
 
− + − + 

  
 

       ( ) ( )
( )

( ),
0

l
l e

l l e
l

P
P

P
τ

σ τ ζ
τ

∞

∞
=

+∑  

 ( ) ( ) ( ) ( )
( ) ( ) ( )( )

2
2

2 2 0 0
09n q

n
n n

n

c
H

P
P P Q Q

Q
τ τ γ

τ
τ τ τ τ

τ
+ −

′
− − − ′

 

 ( )
2,2
0,

22,2
,

1 n

n n

E
P

W
ζ

 
+ −      

 

 ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( )

2
2

2 2 0 0
09q q p

q
q q

q

c
H

P
P P Q Q

Q
τ τ γ γ

τ
τ τ τ τ

τ
− − −

 ′
 − − −

′
 

 ( )
2 2
0

22 21
,
,q
,

q ,q

E
P

W
ζ

 
+ −      

 

 ( ) ( ) ( ) ( )
( ) ( ) ( )( )

2
2

2 2 0 0
09p p

p
p p

p

c
H

P
P P Q Q

Q
τ τ γ

τ
τ τ τ τ

τ+

+

+ +

+

− −
 ′
 − − −

′
 

 ( )
2,2
0,

22,2
,

1 p

p p

E
P

W
ζ+

+ +

 
+ −      

. (18) 

Similarly, for the inhibitor concentration we derive 

( ) ( ) ( ) ( )
( )

2

2

2,02,0
,,

0 09 n

p pn n
L n L

n p

c
p p p

WW
p P

Q Q
τβ

τ τ
+ +

+

=
 
 − − +

′ ′  
r

 
   ( ) ( ) ( )

( ) ( )
2

22
2 22,2 2,2

, ,9
pn

L n L n
n n p p

c
p p p

QQ
P p P

W W

ττ
τ ζ+

+ +

+
  ′′  − − + 

    
 

 ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( )

2
2

2 2 0 0
09n

n
L n n n

n

c
H

P
p p P P Q Q

Q
τ τ

τ
τ τ τ τ

τ
+ −

′
− − − − ′

 

 ( )
2,2
0,

22,2
,

1 n

n n

E
P

W
ζ

 
+ −      

 

 ( ) ( ) ( ) ( )
( ) ( ) ( )( )

2
2

2 2 0 0
09p L

p
p p

p

c
H

P
p P P Q Q

Q
τ τ

τ
τ τ τ τ

τ+

+

+ +

+

− −
 ′
 − − −

′
 

 ( )
2,2
0,

22,2
,

1 p

p p

E
P

W
ζ+

+ +

 
+ −      

, (19) 

where it is verified that both (18) and (19), satisfy (6) and (7), 
respectively and boundary conditions (9)–(13), as well. 

IV. PRESSURE FIELD 
 The pressure field is imposed by the host boundary, along 
with the net cell gain. By combination of previous assumptions 

[4,5], which attribute the cells to the pressure gradient, as it is 
dictated by the Darcy law, we further assume that cells exhibit 
an active chemotactic movement [11] and move towards the 
direction of the nutrient gradient and opposite to the direction 
of the pressure and of the inhibitor gradients. In other words, 
we assume that the velocity of the tumour cells inside jΩ  with 

, , , ,= − +j n q p p e  is given by 

 ( ) ( ) ( ) ( )Pj P σ βµ µ σ µ β= − ∇ + ∇ − ∇v r r r r  for j∈ Ωr , (20) 
where Pµ , σµ

 
and βµ  are proportionality constants, which 

characterize the motility of the cell. Applying the divergence 
operator on both sides of (20) and implying (6) and (7) we 
obtain 

 ( )P jF∆ =r  for j∈ Ωr  with , , , ,= − +j n q p p e , (21) 
where 

 
: / / /j j P j P j PF G pσ βµ µ γ µ µ µ= − + − , (22) 

and :j jG = ∇ ⋅ v  denote the mass per unit volume, per unit 
time that is produced or lost in the region jΩ , normalized by 
the tissue’s density [11]. Easy physical argumentations allow 
us to consider q pF F

−
= , :p pF F

+
=  and 0eF = . 

 The boundary conditions that will complement the partial 
differential equations (21) with (22) and provide uniqueness to 
the corresponding Boundary Value Problems follow from the 
consideration that the pressure and its normal derivative must 
be regular at the origin and, moreover, they definitely should 
be continuous on the boundaries jS  for , ,j n q p−= , that is for 

[ ]1,1ζ ∈ −  and [ )0,2φ π∈  

 ( ) ( )P , , P , ,i jτ ζ φ τ ζ φ=  with , , ,i j n q p−=  (23) 
and 

 
( ) ( )P , ,P , , ji

τ ζ φτ ζ φ
τ τ

∂∂
=

∂ ∂
 with , , ,i j n q p−= , (24) 

provided that j iτ τ> . On the other hand, since the tumour, the 
affected compartment and the host tissue are considered to be 
fluids of different phase, then the corresponding boundary 
conditions on pS

+
 and eS  follow the Young–Laplace law for 

the case of two–face incompressible fluids. Thus, 

 ( ) ( ) ( )lim P lim P
j j

j jJ
τ τ τ τ

α
− +→ →

− =r r r  with ,j p e+= , (25) 

where J
 
stands for the prolate spheroid’s mean curvature and 

,p eα α
+

∈ , while the pressure field’s trace on the exterior 

surface at eS  is  provided via (5), in the form 

 ( ) ( ) ( ) ( )2lim P , , P , , p 1 1
e

e e a
τ τ

τ ζ φ τ ζ φ τ ζ
+ ∞ ∞

→
 = = + −   (26) 

for every [ ]1,1ζ ∈ −  and [ )0,2φ π∈ . In order to apply the 
boundary conditions (25), we expand function J  in Legendre 
series. Hence, by virtue of a geometrical analysis of our 
system, the definition of the mean curvature in the prolate 
geometry results to 

 

( )
( )

( ) ( )
2 2

2 32 2 0

1 2, ,
2 1

l l
l

J j P
c

τ τ ζτ ζ φ τ ζ
τ τ ζ

∞

=

− +
= − =

− −
∑ , (27) 
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evaluated at ,p eτ τ τ
+

=  for every [ ]1,1ζ ∈ −  and [ )0,2φ π∈ . It 

can be easily verified that for 0l ≥ , 

 
( ) ( ) ( ) ( )2

2 2 22
2 1

2 1
l l lj a b

c
ττ τ τ τ
τ

 = − − −
,
 

(28) 

corresponding to the even part and 
 ( )2 1 0lj τ+ = , (29) 
for the odd part, in terms of the complicated but practical 
notations

 

 
( ) ( ) ( )
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Therefore, the pressure field that solves the boundary value 
problem (21)–(26) with the aid of definitions (26)–(31) at 

( ), ,τ ζ φ=r  with [ )1, eτ τ∈ , [ ]1,1ζ ∈ −  and [ )0,2φ π∈ , assumes 
the form 
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It is easily verified that, after some trivial calculations, 
expression (32), satisfies (21) and the boundary conditions 
(23)–(26), as well. 

V. EVOLUTION EQUATION 
 The aim of this work is to determine the evolution of the 
tumour’s exterior boundary pS

+
 under the assumption that it 

evolves normally to itself, so as to remain a confocal prolate 
spheroid throughout the tumour’s development. Considering 
that the velocity of the cells on the exterior boundary is set to 
be 

 ( ) p
p p

d
dt

+

+ +
=

r
v r , (33) 

then equation (20) results to the following relationship in terms 
of τ̂  [14], i.e., 

 ( ) ( ) ( )ˆ ˆ Pp
P p p p

d
dt σ βµ µ σ µ β+

+ + +
 ⋅ = ⋅ − ∇ + ∇ − ∇ 

r
r r rτ τ . (34) 

Then, since ( ), ,p pτ ζ φ
+ +

=r  for [ ]1,1ζ ∈ − , [ )0,2φ π∈  and in 
view of (8), we obtain 
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= − + −

∂−
r r r . (35) 

We, now, proceed by substituting the results (18), (19) and 
(32) evaluated on :p pS τ τ

+ +
= , in (35) and we expand both its 

sides in Legendre series. Next, we use standard orthogonality 
properties of Legendre functions [14] to arrive at a system of 
equations with two outcomes. 
 Firstly, the system is self–consistent for every [ ]1,1ζ ∈ −  and 

[ )0,2φ π∈  if the externally supplied nutrient has the particular 
form 
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where the term ( )0, eσ τ∞  is arbitrary and it is conveniently 
chosen accordingly to the particular physical requirements of 
every problem, while
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while by definition 
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 Secondly, we derive the evolution equation of the exterior 
tumour boundary pS

+
 at pτ τ

+
= , that is
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+ +
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. (39) 

It is obvious that relationship (39) is an ordinary differential 
equation with respect to the function ( )p p tτ τ

+ +
= , where the 

uniqueness of its solution is secured by the initial condition 
( )0p pTτ

+ +
= , pT

+
 being the initial radial prolate spheroidal  

variable of the pS
+

 boundary. Moreover, the right hand–side 

of (39) depends on the time dependent boundaries at ( )n tτ , 

( )q tτ , ( )p tτ
−

 and ( )p tτ
+

. Hence, equation (39) is solvable 
under constraints, which interrelate these boundaries and 
secure that (39) is dependent only on ( )p tτ

+
. 

 These constraints are provided by the critical values of the 
nutrient and inhibitor concentrations. In particular, the critical 
nutrient value nσ ∗  determines if a cell dies out of starvation or 
not, so this value is met on the surface nS , that is 
 ( ) ( )q n n n nσ σ σ ∗= =r r  with ( ), ,n nτ ζ φ=r  (40) 

for every [ ]1,1ζ ∈ −  and [ )0,2φ π∈ . The nutrient pσ ∗  and the 

inhibitor β ∗  value determine if a cell proliferates or not, so 
these critical values are met on surfaces qS  and pS

−
i.e., 
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and 
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whereas [ ]1,1ζ ∈ −  and [ )0,2φ π∈ . Such kind of formulae
 
can be 

obtained by integration of σ  and β , given by (18)–(19), on 

the boundary surfaces :n nS τ τ= , :q qS τ τ=  and :p pS τ τ
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= , 

respectively, providing the critical values nσ ∗ , pσ ∗  and β ∗  as 
average values on these boundaries. This procedure implies 
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and 
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Expressions (43)–(45) form a non–linear system of three 
equations with three unknowns nτ , qτ  and pτ

−
, which can be 

solved  to provide them as a function of pτ
+

. Therein, this set 
of solutions is substituted to the evolution equation (39) and, 
finally, the last one is solved with respect to ( )p p tτ τ

+ +
=  in 

order to obtain the outer boundary’s evolution. 
 Concluding, a transversally isotropic pressure field alone 
cannot result to a prolate spheroidal tumour growth, but a 
specific nutrient supply given via (36) is also needed. This 
result could be interpreted in terms of the specific energy 
needed for the adhesion bonds between cells to preserve the 
lack of symmetry. 

VI. SPECIAL CASES – SPHERICAL MODEL 
 In this section, we are initially involved with the recovering 
of special geometrical cases. Consequently, the corresponding 
results for the oblate spheroidal geometry are obtained through 
the simple transformation [14] 
 iτ λ→  and c ic→ − , (46) 
where 0 λ≤ < +∞  and 0c >  are the new characteristic 
variables. Hence, all the corresponding fields described during 
our previous analysis, are readily obtained in oblate spheroidal 
coordinates, providing us with the results drawn in [12]. The 
asymptotic case of the needle can be reached by a prolate 
spheroid, where 1 2 30 a a a< = << < +∞ , while in the case where 
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2 3 10 a a a< << = < +∞  the oblate spheroid takes the shape of 
a circular disk. Those comprise some interesting limiting cases 
with physical importance. 
 On the other hand, the spheroidal geometry degenerates to 
the spherical one [14] in the limit, as the semifocal distance 
tends to zero, that is 0c → . For the corresponding analytical 
reduction, the limiting process is complicated and involves an 
appropriate combination of c  with the coordinate variables 

such as 2 2 1r c τ ζ≡ = + −r  for 1τ ≥  and 1ζ ≤ , as well as 
the following limits, 
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=  and 
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. (47) 

That way we recover the radial component r  (as well as 1
r

) of 

the spherical coordinate system ( ), ,r ζ φ  for [ )0,r ∈ +∞  (here 
0 er r≤ < ) and the variables ζ , φ  as usual [14], yielding 
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where it is obvious that the spherical normal unit vector on the 
surface of every sphere is given by [14] 
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rτ r . (49) 

 In order to obtain the corresponding mathematical forms 
for the spherical case, we need the definitions of the associated 
Legendre functions of the first m

lP  and of the second m
lQ  kind 

[14] of degree 0,1,2,...l =  and of order 0,1, 2,...,m l= , which 
lead to 
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for every 1τ ≥  and [ )0,r ∈ +∞  with the aim of the reduction 
formulas (47). Moreover, 
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with ( )2 1 1l ll d q+ = , while the relationships (50) and (51) are 
utilized for the zero order ( 0m = ) in our case. 
 On the other hand, the spheroidal geometry degenerates to 
the spherical one in the limit as 0c → , where a mathematical 
treatment upon our final results (18), (19), (32) and (39), leads 
to the recovering of the corresponding expressions for the 
sphere problem. Hence, using the standard reduction relations, 
described earlier, i.e., expressions (47)–(53), we proceed to 
the mathematical treatment for the calculation of the spherical 
fields in terms of the spherical position vector (48). To that 
end, the nutrient concentration (18) reduces to 
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where the corresponding boundaries of the spherical tumour’s 
structure, as well as the physical spherical quantities appearing 
within (54), represent the prolate spheroidal analogous. Under 
the same consideration the inhibitor concentration (19) has the 
spherical limiting expression 
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with this form being less complicated compared to (54). In a 
similar way, the pressure field in spherical coordinates is taken 
from the appropriate limiting procedure via (32) as 
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for every ( ), ,r ζ φ=r , whereas relations (54)–(56) hold true 

when the spherical variables run within the intervals [ )0, er r∈ , 

[ ]1,1ζ ∈ −  and [ )0, 2φ π∈ , while those expressions comprise 
part of the results of [11]. 
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 Finally, the evolution equation (39), after some trivial and 
straightforward manipulation, assumes the spherical form 

 
( ) ( )( ) 3

2

1
3

p
P n q q L n n

p

p p
dr

F F r
dt r σ βγµ µ µ+

+


= − − − + −

  

 
( ) ( )3 3

q p q P q p pr F F rσ γ γµ µ
−

−+ − −

 

 
( ) 3

pP p L ppF rσ βγµ µ µ
+


+ − + − 


, (57) 

which is the corresponding spherical form of a fully non–linear 
ordinary differential equation with respect to the tumour outer 
boundary pr

+
 and initial condition ( )0p pr R

+ +
= , since, in view 

of the critical values (43)–(45), we obtain 

 

2 2
3 1 1

3 2
q n q

n p n
n q

r r
r

r r
γ

σ σ∗ ∗
  −

− = + −      
, (58)

 
while 
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2 2

3 3
0

1
2 3q

q n
, e n q n

e

r r
r r r

r
γσ σ ∗

∞

 −
= − − + − 

  
 

                             ( )
2 2

3 31
2 3p

p q
p q

e

r r
r r

r
γ +

+
−

 −
− + − 

  
 (59)

 and 

 

( )
2 2 331

3 2
p p n

L L n
p

p p p
r r r

r
β + −

−

∗ − −
 −

= + 
  

.

 

(60) 

Once (58)–(60) are readily solved to obtain nr , qr  and pr
−

 as a 

function of pr
+

, then relationship (57) can be uniquely solved 

to evaluate pr
+

as a function of time and  therefore to predict 
the evolution of the spherical tumour’s exterior boundary, 
which is our final goal. 

VII. CONCLUSION 
In the present work we analyzed a continuous non symmetrical 
model of avascular tumour growth that evolves maintaining a 
prolate spheroidal multilayer structure, lying inside a finite 
confocal prolate spheroidal host medium. Its evolution is 
regulated by the diffusion of an inhomogeneous nutrient field, 
and of an internally produced inhibitory agent. Moreover the 
evolution is affected by a pressure field, generated from the 
compensation of cell proliferation and disintegration and the 
transversally isotropic pressure imposed from the surrounding 
medium. 
 Hence, the model is formulated in three boundary value 
problems that hold true as the tumour evolves and provide the 
nutrient field, the internally produced inhibitor field and the 
pressure field throughout the spheroidal tumour, as well as the 
host surrounding. The model includes an assumption for the 
evolution of the tumour’s compartments, which is modeled as 
a non–linear ordinary differential equation with respect to the 
tumour’s exterior boundary and it also includes the three 
aforementioned main fields, calculated on the exterior prolate 
spheroidal boundary. Connection formulae between all the 
other boundaries with respect to the tumour’s exterior one are 
provided in analytical expressions. 

 It turns out that a concentric prolate spheroidal multilayer 
development under an externally imposed transversally 
isotropic pressure field could be secured only under a 
particular type of nutrient supply that in the same time 
specifies the way the exterior boundary evolves. 
 Our future step involves a numerical implementation of the 
derived analytical forms and of the non–linear evolution 
equation. Moreover, alternative evolution approaches for the 
same spheroidal structure in avascular tumour development, as 
well as alternative geometrical structure of the development, 
which is much more applicable to cancer growing in humans, 
is under our current investigation. 
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