On Asymptotically \mathcal{I}-Lacunary statistical Equivalent Sequences of order α

E. Savas
Mathematics for Graduate School of Natural and Applied Sciences at Firat University of Elazig, Turkey.

Abstract—This paper presents the following definition which is a natural combination of the definition for asymptotically equivalent of order α, where $0<\alpha<1$, \mathcal{I}-statistically limit, and \mathcal{I}-lacunary statistical convergence. Let θ be a lacunary sequence; the two nonnegative sequences $x=(x_k)$ and $y=(y_k)$ are said to be asymptotically \mathcal{I}-lacunary statistical equivalent of order α to multiple L provided that for every $\varepsilon >0$, and $\delta>0$,

$$\{r \in \mathbb{N} : \frac{1}{h_r} \{ \{ k \in I_r : | \frac{x_k}{y_k} - L \geq \varepsilon \} \geq \delta \} \in \mathcal{I},$$

where $|A|$ denotes the cardinality of $A \subset \mathbb{N}$.

Recently in ([3] and [11]), we used ideals to introduce the concepts of \mathcal{I}-statistical convergence and \mathcal{I}-lacunary statistical convergence which naturally extend the notions of the above mentioned convergence.

Definition 1. (Marouf, [9]) Two nonnegative sequences $x=(x_k)$ and $y=(y_k)$ are said to be asymptotically equivalent if for arbitrary $\varepsilon >0$,

$$\lim_{r \rightarrow \infty} \frac{1}{h_{r}} | \{ k \in I_{r} : x_{k} - L \geq \varepsilon \} | = 0,$$

where I_{r} is a lacunary sequence and h_{r} is its lacunary ratio.

In this case we write $st \lim x = L$ or $x_{k} \rightarrow L$ (st).

INTRODUCTION

The concept of statistical convergence was introduce by Fast [4] in 1951.

A sequence (x_k) of real numbers is said to be statistically convergent to L if for arbitrary $\varepsilon >0$,

$$\frac{1}{n} \{ \{ k : | x_{k} - L \geq \varepsilon \} \} = 0,$$

where by $k < n$ we mean that $k = 0, 1, 2, \ldots, n$. And the vertical bars indicate the number of elements in the enclosed set. In this case we write $st \lim x = L$ or $x_{k} \rightarrow L$ (st).

The idea of statistical convergence was further extended to \mathcal{I}-convergence in [7] using the notion of ideals of \mathbb{N} with many interesting consequences.

Definition 2. (Fridy, [5]) The sequence $x=(x_k)$ has statistical limit L, denoted by $st \lim x = L$ provided that for every $\varepsilon >0$,

$$\lim_{r \rightarrow \infty} \frac{1}{h_{r}} \{ \{ k \in I_{r} : x_{k} - L \geq \varepsilon \} \} = 0$$

(\text{denoted by } x \sim y).

Moreover, the following concept is due to Fridy and Orhan[6].

A sequence (x_k) of real numbers is said to be lacunary statistically convergent to L (or S_θ-convergent to L) if for any $\varepsilon >0$,

$$\lim_{r \rightarrow \infty} \frac{1}{h_{r}} | \{ k \in I_{r} : x_{k} - L \geq \varepsilon \} | = 0,$$

where $|A|$ denotes the cardinality of $A \subset \mathbb{N}$.
The next definition is natural combination of definitions 1 and 2.

Definition 3. (Patterson, [10]) Two nonnegative sequences \(x = (x_k) \) and \(y = (y_k) \) are said to be asymptotically statistical equivalent of multiple \(L \) provided that for every \(\varepsilon > 0 \),

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{k=n}^{\infty} \mathbb{1}_{\{|x_k - L| \geq \varepsilon\}} = 0
\]

(\(\mathbb{1}_{\cdot} \) denotes the number of \(k \leq n \) for which \(|x_k - L| \geq \varepsilon \)).

Definition 4. A family \(\mathcal{I} \subset 2^\mathbb{N} \) is said to be an ideal of \(\mathbb{N} \) if the following conditions hold:

(a) \(A, B \in \mathcal{I} \) implies \(A \cup B \in \mathcal{I} \),
(b) \(A \in \mathcal{I}, B \subseteq A \) implies \(B \in \mathcal{I} \).

Definition 5. A non-empty family \(F \subset 2^\mathbb{N} \) is said to be an filter of \(\mathbb{N} \) if the following conditions hold:

(a) \(\emptyset \notin F \),
(b) \(A, B \in F \) implies \(A \cap B \in F \),
(c) \(A \in F, A \subseteq B \) implies \(B \in F \).

If \(\mathcal{I} \) is a proper ideal of \(\mathbb{N} \) (i.e., \(\mathbb{N} \notin \mathcal{I} \)), then the family of sets \(F(\mathcal{I}) = \{M \subset \mathbb{N} : \exists A \in \mathcal{I} : M = \mathbb{N} \setminus A\} \) is a filter of \(\mathbb{N} \). It is called the filter associated with the ideal.

Definition 6. A proper ideal \(\mathcal{I} \) is said to be admissible if \(\{n\} \in \mathcal{I} \) for each \(n \in \mathbb{N} \).

Throughout \(\mathcal{I} \) will stand for a proper admissible ideal of \(\mathbb{N} \).

Definition 7. (T") Let \(\mathcal{I} \subset 2^\mathbb{N} \) be a proper admissible ideal of \(\mathbb{N} \). Then the sequence \((x_k) \) of elements of \(\mathbb{R} \) is said to be \(\mathcal{I} \)-convergent to \(L \in \mathbb{R} \) if for each \(\varepsilon > 0 \) the set \(A(\varepsilon) = \{k \in \mathbb{N} : |x_k - L| \geq \varepsilon\} \in \mathcal{I} \).

We now introduce our main definitions.

Definition 8. A sequence \(x = (x_k) \) is said to be \(\mathcal{I} \)-statistically convergent of order \(\alpha \) to \(L \) or \(S(\mathcal{I})^\alpha \)-convergent to \(L \), where \(0 < \alpha \leq 1 \), if for each \(\varepsilon > 0 \) and \(\delta > 0 \)

\[
\{n \in \mathbb{N} : \frac{1}{n^\alpha} \sum_{k=n}^{\infty} \mathbb{1}_{\{|x_k - L| \geq \varepsilon\}} \geq \delta\} \in \mathcal{I}.
\]

In this case we write \(x_k \to L(S(\mathcal{I})^\alpha) \). The class of all \(\mathcal{I} \)-statistically convergent sequences of order \(\alpha \) will be denoted by simply \(S(\mathcal{I})^\alpha \).

Also the next definition is natural combination of definitions 1 and 8.

Definition 9. The two nonnegative sequences \(x = (x_k) \) and \(y = (y_k) \) are said to be asymptotically \(\mathcal{I} \)-statistical equivalent of order \(\alpha \) to multiple \(L \), where \(0 < \alpha \leq 1 \), provided that for each \(\varepsilon > 0 \) and \(\delta > 0 \)

\[
\{n \in \mathbb{N} : \frac{1}{n^\alpha} \sum_{k=n}^{\infty} \mathbb{1}_{\{|x_k - L| \geq \varepsilon\}} \geq \delta\} \in \mathcal{I}.
\]

(\(\mathbb{1}_{\cdot} \) denotes by \(x - y \), and simply asymptotically statistical equivalent if \(\mathcal{I} = 1 \).)

Remark 1. If \(\mathcal{I} = \mathcal{I}_{\text{f}} = \{A \subseteq \mathbb{N} : A \) is a finite subset\}, asymptotically \(\mathcal{I} \)-statistical equivalent of order \(\alpha \) to multiple \(L \) coincides with asymptotically statistical equivalent of order \(\alpha \) to multiple \(L \). For an arbitrary ideal \(\mathcal{I} \) and for \(\alpha = 1 \) it coincides with asymptotically \(\mathcal{I} \)-statistical equivalent of multiple \(L \). When \(\mathcal{I} = \mathcal{I}_{\text{f}} \) and \(\alpha = 1 \) it becomes only asymptotically statistical equivalent of multiple \(L \), [10].

Definition 10. Let \(\theta \) be a lacunary sequence. A sequence \(x = (x_k) \) is said to be \(\mathcal{I} \)-lacunary statistically convergent of order \(\alpha \) to \(L \) or \(S_{\theta}(\mathcal{I})^\alpha \)-convergent to \(L \) if for any \(\varepsilon > 0 \) and \(\delta > 0 \)

\[
\{r \in \mathbb{N} : \frac{1}{h^\alpha_r} \sum_{k=r}^{\infty} \mathbb{1}_{\{|x_k - L| \geq \varepsilon\}} \geq \delta\} \in \mathcal{I}.
\]

In this case we write \(x_k \to L(S_{\theta}(\mathcal{I})^\alpha) \). The class of all \(\mathcal{I} \)-lacunary statistically convergent sequences of order \(\alpha \) will be denoted by \(S_{\theta}(\mathcal{I})^\alpha \).

We now have

Definition 11. Let \(\theta \) be a lacunary sequence; the two nonnegative sequences \(x = (x_k) \) and \(y = (y_k) \) are said to be asymptotically \(\mathcal{I} \)-lacunary statistical equivalent of order \(\alpha \) to multiple \(L \) provided that for any \(\varepsilon > 0 \) and \(\delta > 0 \)

\[
\{r \in \mathbb{N} : \frac{1}{h^\alpha_r} \sum_{k=r}^{\infty} \mathbb{1}_{\{|x_k - y_k - L| \geq \varepsilon\}} \geq \delta\} \in \mathcal{I},
\]

(\(\mathbb{1}_{\cdot} \) denotes by \(x - y \) and simply asymptotically \(\mathcal{I} \)-lacunary statistical equivalent of order \(\alpha \) if \(L = 1 \). Furthermore, let \(S^\alpha(\mathcal{I})^\theta \) denote the set of \(x \) and \(y \) such that \(x - y \).)

Remark 2. For \(\alpha = 1 \) the above definition coincides with asymptotically \(\mathcal{I} \)-lacunary statistical equivalent of multiple \(L \). Further it must be noted in this context that asymptotically \(\mathcal{I} \)-lacunary statistical equivalent of order \(\alpha \) to multiple \(L \) has not been studied till now. Obviously, if we take \(\mathcal{I} = \mathcal{I}_{\text{f}} \) asymptotically lacunary statistical equivalent of order \(\alpha \) to multiple \(L \) is a special case of asymptotically \(\mathcal{I} \)-lacunary statistical equivalent of order \(\alpha \) to multiple \(L \).

Theorem 1. Let \(0 < \alpha \leq \beta \leq 1 \). Then \(S(\mathcal{I})^\alpha \subset S(\mathcal{I})^\beta \).

Proof: Let \(0 < \alpha < \beta \leq 1 \). Then

\[
\frac{1}{n^\alpha} \sum_{k=n}^{\infty} \mathbb{1}_{\{|x_k - L| \geq \varepsilon\}} \leq \frac{1}{n^\beta} \sum_{k=n}^{\infty} \mathbb{1}_{\{|x_k - L| \geq \varepsilon\}}
\]

and so for any \(\delta > 0 \),
n we get to multiple it follows that is an ideal and . Then there exists . Define for sufficiently large , which belongs to if
\[\delta > 0 \]
i.e.
\[\delta \in (0, \infty) \]

Furthermore, let be a lacunary sequence; two number s.t.
\[\theta \in (0, 1) \]

In particular , the following conditions remain true for and
\[\alpha \in (0, \infty) \]

Then for any
\[\delta > 0 \]

We now investigate the relationship between and
\[\delta > 0 \]

Then for any
\[\delta > 0 \]

This proves the result.

In order to establish that the inclusion \(N^L(\mathcal{I})^\sigma \subseteq S^L(\mathcal{I})^\sigma \) is proper, let \(\theta \) be given and define \(x_k \) to be 1,2,...\(\alpha \) integers in \(I_r \) and \(x_k = 0 \) otherwise for all \(r = 1,2,3,...,y_k = 1 \) for all \(k \). Then for any \(\varepsilon > 0 \),
\[\frac{1}{h_r^\sigma} \left| \left\{ k \in I_r : \frac{x_k}{y_k} - L \geq \varepsilon \right\} \right| \leq \left\{ \frac{\sqrt{h_r^\sigma}}{h_r} \right\} + \frac{1}{4} \]
and for any \(\delta > 0 \) we get
\[\left\{ r \in \mathbb{N} : \frac{1}{h_r^\sigma} \left| \left\{ k \in I_r : \frac{x_k}{y_k} - L \geq \varepsilon \right\} \right| \geq \delta \right\} \subseteq \{ r \in \mathbb{N} : \left\{ \frac{\sqrt{h_r^\sigma}}{h_r^\sigma} \right\} \geq \delta \} \]

Since the set on the right hand side is a finite set and so \(S^L(\mathcal{I})^\sigma \) belongs to \(\mathcal{I} \) it follows that \(x - y \). On the other hand
\[\frac{1}{h_r^\sigma} \sum_{k \in I_r} \frac{x_k}{y_k} - 0 \geq \frac{1}{4} \left\{ \frac{\sqrt{h_r^\sigma}}{h_r^\sigma} \right\} + \frac{1}{2} \]
for some \(m \in \mathbb{N} \) which belongs to \(F(\mathcal{I}) \) since \(\mathcal{I} \) is admissible. So the following fails \(x - y \).

Remark 4. The following two conditions remain true for \(0 < \alpha < 1 \) is not clear and we leave them as open problems.

\[S^L(\mathcal{I})^\sigma = S^L(\mathcal{I})^\sigma \]

(2) \(x \in I_\sigma \) and \(x - y \) implies \(x - y \).

(3) \(S^L(\mathcal{I})^\sigma \cap I_\sigma = N^L(\mathcal{I})^\sigma \cap I_\sigma \).

We now investigate the relationship between \(s^L(\mathcal{I})^\sigma \) and \(s^L(\mathcal{I})^\sigma \) for sufficiently large \(\sigma \).

Then for any
\[\delta > 0 \]

This proves the result.

In order to establish that the inclusion \(N^L(\mathcal{I})^\sigma \subseteq S^L(\mathcal{I})^\sigma \) is proper, let \(\theta \) be given and define \(x_k \) to be 1,2,...\(\alpha \) integers in \(I_r \) and \(x_k = 0 \) otherwise for all \(r = 1,2,3,...,y_k = 1 \) for all \(k \). Then for any \(\varepsilon > 0 \),
\[\frac{1}{h_r^\sigma} \left| \left\{ k \in I_r : \frac{x_k}{y_k} - L \geq \varepsilon \right\} \right| \leq \left\{ \frac{\sqrt{h_r^\sigma}}{h_r^\sigma} \right\} + \frac{1}{4} \]
and for any \(\delta > 0 \) we get
\[\left\{ r \in \mathbb{N} : \frac{1}{h_r^\sigma} \left| \left\{ k \in I_r : \frac{x_k}{y_k} - L \geq \varepsilon \right\} \right| \geq \delta \right\} \subseteq \{ r \in \mathbb{N} : \left\{ \frac{\sqrt{h_r^\sigma}}{h_r^\sigma} \right\} \geq \delta \} \]

Since the set on the right hand side is a finite set and so \(S^L(\mathcal{I})^\sigma \) belongs to \(\mathcal{I} \) it follows that \(x - y \). On the other hand
\[\frac{1}{h_r^\sigma} \sum_{k \in I_r} \frac{x_k}{y_k} - 0 \geq \frac{1}{4} \left\{ \frac{\sqrt{h_r^\sigma}}{h_r^\sigma} \right\} + \frac{1}{2} \]
for some \(m \in \mathbb{N} \) which belongs to \(F(\mathcal{I}) \) since \(\mathcal{I} \) is admissible. So the following fails \(x - y \).

Remark 4. The following two conditions remain true for \(0 < \alpha < 1 \) is not clear and we leave them as open problems.

\[S^L(\mathcal{I})^\sigma = S^L(\mathcal{I})^\sigma \]

(2) \(x \in I_\sigma \) and \(x - y \) implies \(x - y \).

(3) \(S^L(\mathcal{I})^\sigma \cap I_\sigma = N^L(\mathcal{I})^\sigma \cap I_\sigma \).

We now investigate the relationship between \(s^L(\mathcal{I})^\sigma \) and \(s^L(\mathcal{I})^\sigma \) for sufficiently large \(\sigma \).

Then for any
\[\delta > 0 \]

This proves the result.
\[\{ r \in \mathbb{N} : \frac{1}{k_r^a} \left| \{ k \in I_r : \frac{x_k}{y_k} - L \geq \varepsilon \} \right| \geq \delta \} \subseteq \{ r \in \mathbb{N} : \frac{1}{k_r^a} \left| \{ k \leq k_r : \frac{x_k}{y_k} - L \geq \varepsilon \} \right| \geq \frac{\delta \sigma}{(1 + \sigma)} \in T. \]

This proves the result.

Remark 5. The converse of this result is not clear for \(\alpha < 1 \) and we leave it as an open problem.

For the next result we assume that the lacunary sequence \(\theta \) satisfies the condition that for any set \(C \in F(T) \),
\[\bigcup \{ n : k_{r-1} < n < k_r, r \in C \} \subseteq T. \]

Theorem 5. For a lacunary sequence \(\theta \) satisfying the above condition,
\[s^*_\theta([r])^\alpha \quad x - y \text{ implies } x - y \]
if \[\sup_r \sum_{r=0}^{r-1} \frac{h_r^a}{(k_r^a)^\alpha} = B(\text{say}) < \infty. \]

Proof: Suppose that \(x - y \) and for \(\varepsilon, \delta, \delta_1 > 0 \) define the sets
\[C = \{ r \in \mathbb{N} : \frac{1}{k_r^a} \left| \{ k \in I_r : \frac{x_k}{y_k} - L \geq \varepsilon \} \right| < \delta \} \]
and
\[T = \{ n \in \mathbb{N} : \frac{1}{n^a} \left| \{ k \leq n : \frac{x_k}{y_k} - L \geq \varepsilon \} \right| < \delta_1 \}. \]

It is obvious from our assumption that \(C \in F(T) \), the filter associated with the ideal \(T \). Further observe that
\[A_j = \frac{1}{k_r^a} \left| \{ k \in I_r : \frac{x_k}{y_k} - L \geq \varepsilon \} \right| < \delta \]
for all \(j \in C \). Let \(n \in \mathbb{N} \) be such that \(k_{r-1} < n < k_r \) for some \(r \in C \). Now
\[\frac{1}{n^a} \left| \{ k \leq n : \frac{x_k}{y_k} - L \geq \varepsilon \} \right| \leq \frac{1}{k_{r-1}^a} \left| \{ k \leq k_r : \frac{x_k}{y_k} - L \geq \varepsilon \} \right| \]
\[= \frac{1}{k_{r-1}^a} \left| \{ k \in I_r : \frac{x_k}{y_k} - L \geq \varepsilon \} \right| + \ldots + \frac{1}{k_r^a} \left| \{ k \in I_r : \frac{x_k}{y_k} - L \geq \varepsilon \} \right| \]
\[= \frac{k_r^a}{k_{r-1}^a} A_1 + \frac{(k_r - k_{r-1})^a}{k_{r-1}^a} A_2 + \ldots + \frac{(k_n - k_{r-1})^a}{k_{r-1}^a} A_n \]
\[\leq \sup_j A_j \sup_r \sum_{r=0}^{r-1} \frac{(k_r - k_{r-1})^a}{k_{r-1}^a} < B\delta. \]

Choosing \(\delta_1 = \frac{\delta}{B} \) and in view of the fact that
\[\bigcup \{ n : k_{r-1} < n < k_r, r \in C \} \subseteq T \]
where \(C \in F(T) \) it follows from our assumption on \(\theta \) that the set \(T \) also belongs to \(F(T) \) and this completes the proof of the theorem.

REFERENCES

Department of Mathematics, Istanbul Commerce University, Sutluce-Istanbul/ Turkey

E. Savas received the PhD degree in Mathematics for Graduate School of Natural and Applied Sciences at Firat University of Elazig in Turkey. His research interests are in the areas of functional analysis and sequence spaces including statistical convergence, matrix transformations and fuzzy sequence spaces. He has published research articles in reputed international journals of mathematical science. He is referee and editor of mathematical journals.

Creative Commons Attribution License 4.0 (Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative Commons Attribution License 4.0 https://creativecommons.org/licenses/by/4.0/deed.en_US