
1Mehrnoosh Bazrafkan
1 Department of Computer,Marvdasht Branch ,Islamic Azad university, Marvdasht,Iran

Mehrnoosh.bazrafkan@gmail.com

Syntactic pattern recognition worries the

difficult of determining whether a string x be

appropriate to a language L(G) or not,if X is

not deformed, this is called a recognition or a

parsing problem. The two tabular parsing

methods for context-free language ,the

cocke-kasami-younger (cky) and the Earley

termed. In syntactic pattern recognition ,we

assume that a pattern can be exemplified by a

sequence of primitives and a class of patterns

makes a language L(G).consider two

grammars 𝐺1 and 𝐺2 which represent the

class 1 and the class 2,respectively.If a

sequence of primitives x belongs to 𝐿(𝐺1),x

is determined to be a pattern of the class 1.if

x belongs to neither 𝐿(𝐺1) and 𝐿(𝐺2),x is

rejected,[1]-[3].

In the syntactic approach ,formal grammars

are used for pattern class representation.The

productions of a grammar describe how

complex (sub)patterns can be built up from

simpler elements.The recognition procedure

is based on the concept of formal language

parsing.The most fundumental concept is

string grammars.They operate on strings of

symbols,i.e words over a finite

alphabet.Formal grammars operate on words

over finite sets of symbols,[1]-[6].

Definition : A formal grammar is a four-tuple

𝐺 = (𝑉𝑁 , 𝑉𝑇 , 𝑆, 𝑃) where 𝑉𝑁 is a finite set of

nonterminals symbols, 𝑉𝑇 is a finite set of

terminal symbols,P is a finite set of

production set or rewriting rules and 𝑆 ∈
𝑉𝑁 is the initial or starting symbol.It is

essential that 𝑉𝑁 ∩ 𝑉𝑇 = 0,the union of 𝑉𝑁

and 𝑉𝑇 is called the vocabulary 𝑉 = 𝑉𝑁 ∪ 𝑉𝑇.

Definition 2:

A New Top-Down Context-Free Parsing

for Syntactic Pattern Recognition

Abstract: The numerous different

mathematical methods used to solve pattern

recognition snags may be assembled into two

universal approaches: the decision-theoretic

approach and the syntactic(structural)

approach. In this paper, at first syntactic

pattern recognition method and formal

grammars are described and then has been

investigated one of the techniques in

syntactic pattern recognition called top –

down tabular parser known as Earley’s

algorithm Earley's tabular parser is one of

the methods of context -free grammar

parsing for syntactic pattern recognition.

Earley's algorithm uses array data structure

for implementing, which is the main

problem and for this reason takes a lots of

time, searching in array and grammar

parsing, and wasting lots of memory. In

order to solve these problems and most

important, the cubic time complexity, in this

article, a new algorithm has been

introduced, which reduces wasting the

memory to zero, with using linked list data

structure. Also, with the changes in the

implementation and performance of the

algorithm, cubic time complexity has

transformed into O (n*R) order.

Key words: syntactic pattern recognition,

tabular parser, context –free grammar, time

complexity, linked list data structure.

I. INTRODUCTION

Received: April 18, 2021. Revised: Novemeber 16, 2021. Accepted: December 26, 2021. Published: January 12, 2022.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES
DOI: 10.46300/9101.2022.16.4 Volume 16, 2022

E-ISSN: 1998-0140 23

9 L[i] = L[i] ∪ {(Y →∙ γ, i)};

10 end

11 else if (Y ∈ VT and i
≠ n) then begin {∗ scanner ∗}

12 if Y = ai+1 then

13 L[i + 1] ≔ L[i +
1] ∪ {(X → αY. β, I)} ;

14 end

15 else if

Yβ = ʎ then begin {∗ completer ∗}

16 for each (A → δ. Xξ, k) ∈ L[j]do

17 L[i] ∶= L[i] ∪ {(A → δ. Xξ , k)}

18 end

19 end {∗ of for i ∗};

20 if (
no new item has been generated

 in L[i]from lines 6 − 19
)

21 then i ≔ i + 1;

22 end {∗ of while ∗}
23 if ((S → α. ,0)
∈ L[n]then I is accepted with weight w

24 else I is rejected;

25 end{∗ of Earley ∗}.

The Earley has the following properties:

(1)If (𝐴 → 𝛼 ∙ 𝛽, 𝑖) ∈ 𝐿[𝑗]𝑡ℎ𝑒𝑛

 𝛼
∗

→ 𝛼𝑖+1𝛼𝐼+2 … 𝛼𝑗

(2) The space and time complexities to make

the parse lists are 𝑂(𝑛2) and 𝑂(𝑛3),

respectively. The time complexity to create

all syntactic trees of a string is 𝑂(𝑐𝑛)[14].

In the following, how the parsing grammar

and input string searching perform, it has

been shown with an example.

Consider CFG G = (VN, VT, p, S) where

VN = {S, T, A, B} , VT = {a, b}, P = {S →
T, S → AB, T → aTb, T → ab, A → aA, A →
a, B → bB, B → b} and L(G) =
 {anbm |n, m ≥ 0} and input string

I=aabb.Fig 1 shows the procedure of

described algorithm.

L[0] (1) ($ →. 𝑆, 0) 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑒𝑡𝑡𝑖𝑛𝑔
(2) (𝑆 →. 𝑇, 0) 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(1)
(3) (𝑆 →. 𝐴𝐵, 0) 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(1)
(4) (𝑇 →. 𝑎𝑇𝑏, 0) 𝑝𝑟𝑒𝑑(2)
(5) (𝑇 →. 𝑎𝑏, 0) 𝑝𝑟𝑒𝑑(2)
(6) (𝐴 →. 𝑎𝐴, 0)𝑝𝑟𝑒𝑑 (3)
(7) (𝐴 →. 𝑎, 0) 𝑝𝑟𝑒𝑑(3)

L[1] (8) (𝑇 → 𝑎. 𝑇𝑏, 0)𝑠𝑐𝑎𝑛 (4)
(9) (𝑇 → 𝑎. 𝑏, 0)𝑠𝑐𝑎𝑛(5)
(10) (𝐴 → 𝑎. 𝐴, 0)𝑠𝑐𝑎𝑛 (6)
(11) (𝐴 → 𝑎. ,0)𝑠𝑐𝑎𝑛(7)
(12) (𝑇 →. 𝑎𝑇𝑏, 1)𝑝𝑟𝑒𝑑(8)
(13) (𝑇 →. 𝑎𝑏, 1)𝑝𝑟𝑒𝑑(8)
(14) (𝐴 →. 𝑎𝐴, 1) 𝑝𝑟𝑒𝑑(10)
(15) (𝐴 →. 𝑎, 1) 𝑝𝑟𝑒𝑑(10)
(16) (𝑆 → 𝐴. 𝐵, 0)𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒(11,3)
(17) (𝐵 →. 𝑏𝐵, 1)𝑝𝑟𝑒𝑑(16)
(18) (𝐵 →. 𝑏, 1)𝑝𝑟𝑒𝑑(16)

L[2] (19) (𝑇 → 𝑎. 𝑇𝑏, 1)𝑠𝑐𝑎𝑛 (12)
(20) (𝑇 → 𝑎. 𝑏, 1)𝑠𝑐𝑎𝑛(13)
(21) (𝐴 → 𝑎. 𝐴, 1)𝑠𝑐𝑎𝑛(14)
(22) (𝐴 → 𝑎. ,1)𝑠𝑐𝑎𝑛(15)
(23) (𝑇 →. 𝑎𝑇𝑏, 2)𝑝𝑟𝑒𝑑(19)
(24) (𝑇 →. 𝑎𝑏, 2)𝑝𝑟𝑒𝑑(19)
(25) (𝐴 →. 𝑎𝐴, 2)𝑝𝑟𝑒𝑑(21)
(26) (𝐴 →. 𝑎, 2)𝑝𝑟𝑒𝑑(21)
(27) (𝑆 → 𝐴. 𝐵, 0)𝑐𝑜𝑚𝑝(22,3)
(28) (𝐵 →. 𝑏𝐵, 2)𝑝𝑟𝑒𝑑(27)
(29) (𝐵 →. 𝑏, 2)𝑝𝑟𝑒𝑑(27)

L[3] (30) (𝑇 → 𝑎𝑏. ,1)𝑠𝑐𝑎𝑛(20)
(31) (𝐵 → 𝑏. 𝐵, 2)𝑠𝑐𝑎𝑛(28)
(32) (𝐵 → 𝑏. ,2)𝑠𝑐𝑎𝑛(29)
(33) (𝐵 →. 𝑏𝐵, 3)𝑝𝑟𝑒𝑑(30)
(34) (𝐵 →. 𝑏, 3)𝑝𝑟𝑒𝑑(30)

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES
DOI: 10.46300/9101.2022.16.4 Volume 16, 2022

E-ISSN: 1998-0140 24

(35) (𝑆 → 𝐴𝐵. ,0)𝑐𝑜𝑚𝑝(32,27)
(36) ($ → 𝑆. ,0)𝑐𝑜𝑚𝑝(35,1)
(37) (𝑇 → 𝑎𝑇. 𝑏, 1)𝑐𝑜𝑚𝑝(30,19)
(38) (𝑆 → 𝑇. ,0)𝑐𝑜𝑚𝑝(30,2)
(39) ($ → 𝑆. ,0)𝑐𝑜𝑚𝑝(38,1)

L[4] (40) (𝐵 → 𝑏. 𝐵, 3)𝑠𝑐𝑎𝑛(32)
(41) (𝐵 → 𝑏. ,3)𝑠𝑐𝑎𝑛(33)
(42) (𝐵 →. 𝑏𝐵, 4)𝑝𝑟𝑒𝑑(36)
(43) (𝐵 →. 𝑏, 4)𝑝𝑟𝑒𝑑(36)
(44) (𝑆 → 𝐴𝐵. ,0)𝑐𝑜𝑚𝑝(27,37)
(45) ($ → 𝑆. ,0)𝑐𝑜𝑚𝑝(40,1)
(46) (𝑇 → 𝑎𝑇𝑏. ,1)𝑠𝑐𝑎𝑛(37)
(47) (𝑇 → 𝑎𝑇. 𝑏, 1)𝑐𝑜𝑚𝑝(46,19)
(48) (𝑆 → 𝑇. ,0)comp(46,2)
(49) ($ → 𝑆. ,0)𝑐𝑜𝑚𝑝(48,0)

Fig 1. Earley algorithm for I=aabb

As it has been seen, this algorithm performs

the parsing grammar and searching input

string, in three steps predict, scan and

completing. In order to prevent having the

repeating items each time, when it expects,

new item adds to the list, comparing that with

all items exist at the list, happens. Also in

each completing performance all items at

each rows should checked out, to find the

specific item and all these takes lots of time

at the grammars with lots of rules and will

have the very high time complexity, which

will be at the 𝑂(𝑛2) order in the best case[5-

6].

This algorithm performs, recognizing and

grammar parsing in the very complicated

way and takes lots of time. Another problem

is using array data structure at implementing.

One of the array data structure problem is the

fixed length which has to be very definite

from the beginning, so in order to implement

the algorithm we have to consider the array

bigger than usual therefore it won’t having

the problem when new item produces, and

perform well for different grammars with the

different rules, but it might lots of the

memory spaces stay vacant and waste lots of

memories.

Cause of the problems have been mentioned,

we introduce an algorithm which won’t have

most of the previous problems. In this

algorithm at first in order to solve the array’s

problem, use of the linked list has been

suggested reason for that: this data structure

is flexible for the length changing during

performance, also insertion and deletion of

the element at linked list is doable with O (1)

easily. Therefore at this algorithm we allow

all the nodes to be added in the list and it

won’t be needed to compare anymore.

Another thing about this suggested algorithm

is : with the changes at the Earley’s

performance, would haven’t been need to

compare so would have been deleted lots of

comparing. Suggested algorithm, does its

own performance in n steps (n is the length of

the input string) and maximum at each steps

will produce nodes equal to the rules exist in

rules set (called R) therefore n*R nodes

produce in order to recognize the input string,

in the other way R represents the number of

the repeating while(p!=null)loop. At each

step three comparison happens so n*R*3

comparison are needed for all nodes exist at

linked list .All these are less than cubic order

at the Earley algorithm. Also cause using the

linked list the quantity wasting memory has

become zero. This algorithm won’t need to

completed operation. So lots of comparisons

cause of completed operations will be

eliminated. In order to use of the suggested

algorithm shouldn’t exist left-recursion in

grammar. Suggested algorithm has the time

complexity of the O(n*R)(n is length of the

input string and R is the number of rules in

the rule set).fig 2 shows the proposed

algorithm as described up.

III. THE EARLEY ALGORITHM’S

DISADVANTAGES

IV. THE PROPOSED ALGORITHM

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES
DOI: 10.46300/9101.2022.16.4 Volume 16, 2022

E-ISSN: 1998-0140 25

1 new link list*p,*q;
2 𝑝 → 𝑑𝑎𝑡𝑎 = ($ →. 𝑆)
3𝑝 → 𝑛𝑒𝑥𝑡 = 𝑛𝑢𝑙𝑙;
4𝑞 = 𝑝;
6 𝑖 = 0;
7 𝑤ℎ𝑖𝑙𝑒 (𝑖 ≤ 𝑛)
8 new link list *r,*h;
9 𝑟 → 𝑑𝑎𝑡𝑎 = ℎ𝑒𝑎𝑑𝑒𝑟;//list is not
empty //
9 ℎ = 𝑟;
10 While(p!=null)
11 𝑖𝑓(𝑝 → 𝑑𝑎𝑡𝑎 = ($ → 𝛼. 𝑌𝛽))
12 𝑖𝑓 (𝑌𝛽 = 𝜆)
13 𝑖𝑓(𝑖 ≠ 𝑛)
14 Break;
15 𝑒𝑙𝑠𝑒𝑖𝑓(𝑖 == 𝑛)
16
(print input string is accepted);
17 𝑒𝑙𝑠𝑒 𝑖𝑓(𝑌 𝑖𝑠 𝑛𝑜𝑛𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙)
18 𝑖𝑓(𝑖 ≠ 𝑛)
19 𝑓𝑜𝑟𝑒𝑎𝑐ℎ(𝑌 → 𝜓 ∈
𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑠𝑒𝑡){*predictor*}
20 New node * temp;
21 𝑡𝑒𝑚𝑝 → 𝑑𝑎𝑡𝑎 =
($ → 𝛼. 𝜓𝛽)
22 𝑡𝑒𝑚𝑝 → 𝑛𝑒𝑥𝑡 =
𝑛𝑢𝑙𝑙;
23 𝑞 → 𝑛𝑒𝑥𝑡 = 𝑡𝑒𝑚𝑝;
24 𝑒𝑙𝑠𝑒 𝑖𝑓(𝑖 == 𝑛)
25 𝑏𝑟𝑒𝑎𝑘;//go to line
40 //
26 𝑒𝑙𝑠𝑒 𝑖𝑓(𝑌𝑖𝑠 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙)
27 𝑖𝑓(𝑖 ≠ 𝑛)
28 𝑖𝑓(𝑌 =
𝑎𝑖+1){*scanner*}
29 𝑛𝑒𝑤 𝑛𝑜𝑑𝑒 ∗ 𝑡𝑒𝑚𝑝;
30 𝑡𝑒𝑚𝑝 → 𝑑𝑎𝑡𝑎 =
($ → 𝛼𝑌. 𝛽);
31 𝑡𝑒𝑚𝑝 → 𝑛𝑒𝑥𝑡 =
𝑛𝑢𝑙𝑙;
32 𝑟 → 𝑛𝑒𝑥𝑡 = 𝑡𝑒𝑚𝑝
33 𝑟 = 𝑡𝑒𝑚𝑝;
34 𝑒𝑙𝑠𝑒
35 Break;//go to line42//
36
37 𝑒𝑙𝑠𝑒
38 break;
39 end

40 𝑝 = 𝑝 → 𝑛𝑒𝑥𝑡;
41 }
42 𝑝 → 𝑛𝑒𝑥𝑡 = ℎ;
43 𝑞 = 𝑟;
44 𝑖 = 𝑖 + 1;
45 }

Fig 2. Suggested algorithm

At the following, the example of the part 2,

with getting help from the suggested

algorithm, for the input string (I=aabb)has

been represented.Fig 3 represents function

of the suggested method.

$->.S
$->.T

Pred(S)
$->.AB
Pred(S)

$->.aTb
Pred(T)

i=0
$->.ab
Pred(T)

$->.aAB
Pred(A)

$->.aB
Pred(A)

$->a.Tb
Scan(a)

$->a.b
Scan(a)

$->a.AB
Scan(a)

$->a.B
Scan(a)

$->a.aTbb
Pred(T)

$->a.abb
Pred(T)

$->a.aAB
Pred(A)

$->a.aB
Pred(A)

$->a.bB
Pred(B)

$->a.b
Pred(B)

$->aa.Tbb
Scan(a)

$->aa.bb
Scan(a)

$->aa.AB
Scan(a)

$->aa.B
Scan(a)

$->aa.aTbbb
Pred(T)

$->aa.abbb
Pred(T)

$->aa.aAB
Pred(A)

$->aa.aB
Pred(A)

$->aa.bB
Pred(B)

$->aa.b
Pred(B)

$->aab.b
Scan(b)

$->aab.B
Scan(b)

$->aab.
Scan(b)

$->aab.bB
Pred(B)

$->aab.b
Pred(b)

$->aabb.
Scan(b)

$->aabb.B
Scan(b)

$->aabb.
Scan(b)

Input string is
accepted in two

ways

i=1

i=2

i=3

i=4

Fig.3 suggested algorithm for I=aabb

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES
DOI: 10.46300/9101.2022.16.4 Volume 16, 2022

E-ISSN: 1998-0140 26

At this article , At first ,we have reviewed

one of the tabular parsers which has been

used at recognizing syntactic pattern ,called

Earley ,and then we discussed about

advantages and disadvantages. Then we

suggested an algorithm which decreased the

cubic time complexity of the Earley

algorithm to the O(n*R)time complexity

with using the linked list and changing at

parsing performance. Also decrease the

amount of wasting memory to the zero with

the linked list.

V. CONCLUSION

REFERENCES

[1] Bunke, Horst. Syntactic and structural pattern

recognition: theory and applications. Vol. 7. World

Scientific Publishing Company Incorporated, 1990.

[2] K.S.Fu ,Syntactic Pattern Recognition And

Application,Chapter 5,Prentice hall ,Engelwood

Cliffs,NJ,1982

[3] Jain, Anil K., Robert P. W. Duin, and Jianchang Mao.

"Statistical pattern recognition: A review." Pattern

Analysis and Machine Intelligence, IEEE Transactions

on 22.1 (2000): 4-37.

[4] Kandel, Abraham. Introduction to Pattern

Recognition, Sta: Statistical, Structural, Neural and

Fuzzy Logic Approaches. Vol. 32. World Scientific

Publishing Company, 1999.

[5] Bunke, Horst. "Recent advances in structural pattern

recognition with applications to visual form analysis."

Visual Form 2001. Springer Berlin Heidelberg, 2001. 11-

23.

[6] Suganthan, Ponnuthurai N. "Structural pattern

recognition using genetic algorithms." Pattern

Recognition 35.9 (2002): 1883-1893.

[7] Mitra Basu, Horst Bunke, and Alberto Del Bimbo

,Guest Editors’ Introduction to the Special Section on

Syntactic and Structural Pattern Recognition IEEE

TRANSACTIONS VOL. 27, NO. 7, JULY 2005.

[8] Suganthan, Ponnuthurai N. "Structural pattern

recognition using genetic algorithms." Pattern

Recognition 35.9 (2002): 1883-1893.

[9] Civera, Jorge, et al. "A syntactic pattern recognition

approach to computer assisted translation." Structural,

Syntactic, and Statistical Pattern Recognition. Springer

Berlin Heidelberg, 2004. 207-215.

[10] Conte, Donatello, et al. "Thirty years of graph

matching in pattern recognition."International journal of

pattern recognition and artificial intelligence 18.03

(2004): 265-298.

[11] A.V.Aho and J.D.Ullman,The theory of parsing

,Translation , and compiling ,Vol 1:parsing,(prentice –

hall, Englewood cliffs ,NJ ,1972).

[12] E.Tanaka, M.Ikeda and k.esure,”direct

parsing”,pattern recognition 1986. 315- 323

[13] Miclet, Laurent. Grammatical inference. World

Scientific, 1990.

[14] Earley, J.: An Efficient Context-flee Parsing

Algorithm Ph. D. Thesis (Carnegie- Mellon University,

1968).

[15] Aho, A.V. and Ullman, J. D ,The Theory of Parsing,

Translation, and Compiling, Parsing, vol. I (Prentice-

Hall, 1972).

[16] L.Miclat,Structural Methods in Pattern recognition

(Springer-verlag,New York 1986)

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES
DOI: 10.46300/9101.2022.16.4 Volume 16, 2022

E-ISSN: 1998-0140 27

