
Hall effect on MHD flow and heat transfer
over an unsteady stretching permeable surface
in the presence of thermal radiation and a heat

source/sink

I. INTRODUCTION

Theoretical studies of magnetohydrodynamic flow and
heat transfer over stretching surfaces have received great
attention by virtue of their numerous applications in
the fields of metallurgy, chemical engineering and bi-
ological systems. Such applications include geothermal
reservoirs, wire and fiber coating, food stuff processing,
reactor fluidization, enhanced oil recovery, packed bed
catalytic reactors, and cooling of nuclear reactors. The
primary aim in extrusion is to maintain the quality of
the surface of the extricate.

Examples of such studies include Sakiadis[1], [2] did
pioneering work on boundary layer flow on a contin-
uously moving surface. Shateyi and Motsa [3] carried
out a numerical analysis of the problem of magnetohy-
drodynamic boundary layer flow, heat and mass transfer
rates on steady two-dimensional flow of an electrically
conducting fluid over a stretching sheet embedded in a

non-Darcy porous medium in the presence of thermal
radiation and viscous dissipation. Shateyi [4] investigated
thermal radiation and buoyancy effects on heat and
mass transfer over a semi-infinite stretching surface with
suction and blowing. Singh et al. [5] investigated two
dimensional unsteady flow of a viscous incompressible
fluid about a stagnation point on a permeable stretching
sheet. Shateyi and Motsa [6] numerically investigated the
unsteady heat, mass and fluid transfer over a horizontal
stretching sheet. More recently, Shateyi and Marewo [7]
studied the magnetohydrodynamic boundary layer flow
with heat and mass transfer of an UCM fluid over a
stretching sheet in the presence of viscous dissipation
and thermal radiation.

Governing equations modeling MHD flow and heat
transfer over stretching surfaces are highly nonlinear
thereby exact solutions are impossible to obtain. There-
fore, numerical solutions have always been developed
and modified, as a bid of getting more accurate and
stable solutions. The current study seeks to investigate
the Hall effect on MHD flow and heat transfer over an
unsteady stretching permeable surface in the presence of
thermal radiation and a heat source/sink. We propose to
numerically solve the present problem using a recently
developed iterative method known as Spectral Local
Linearization Method (SLLM), Motsa [8]. The SLLM
approach is based on transforming nonlinear ordinary
differential equation into an iterative scheme. The iter-
ative scheme is then blended with Chebyshev spectral
method ([9]).

II. MODEL FORMULATION

We consider an unsteady two-dimensional laminar
MHD boundary layer flow and heat transfer of an incom-
pressible, viscous and electrically conducting fluid over
a continuously moving stretching permeable surface.

1S. Shateyi, 2G.T. Marewo 
1Department of Mathematics and Applied Mathematics, University of Venda, , X5050, 0950 South Africa   

2University of Swaziland, Department of Mathematics, Private Bag 4, Kwaluseni, Swaziland 

Abstract—This paper employs the computational 

iterative approach known as Spectral Local Linearization 

Method (SLLM) to analyze Hall effect on MHD flow and 

heat transfer over an unsteady stretching permeable 

surface in the presence of thermal radiation and heat 

source/sink. To demonstrate the reliability of our 

proposed method, we made comparison with Matlab 

bvp4c routine technique and excellent agreement was 

observed. The governing partial equations are 

transformed into a system of ordinary differential 

equations by using suitable similarity transformations. 

The results are obtained for velocity, temperature, skin 

friction and Nusselt number.  

Keywords—Hall effect;stretching sheet ; thermal 

radiation, heat source/sink. 

INTERNATIONAL JOURNAL OF GEOLOGY 
DOI: 10.46300/9105.2022.16.3 Volume 16, 2022

E-ISSN: 1998-4499 9



The flow is subjected to a transverse magnetic field of
strength B0 and the Hall current is taken into account in
this study.

The relevant governing equations of fluid flow and
heat transfer are,
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The associated boundary conditions to the current prob-
lem are:

u = Uw(x, t), v = Vw, T = Tw(x, t), at y = 0,

u→ 0, w → 0, T → T∞ as y → ∞, (5)

where u, v and w are the velocity components along
x, y and z directions, respectively and t is the time.
T is the temperature within the fluid, cp is the specific
heat at constant pressure, α is the thermal diffusivity, ν
is the kinematic viscosity of the fluid density, Tw(x, t)
is the temperature on the stretching surface, T∞ is
the ambient temperature with Tw > T∞. We have
Vw = −(νUw/x)

1/2f(0) representing the mass transfer
at the surface with Vw > 0 for injection and Vw < 0 for
suction. We also have Uw(x, t) = ax/(1− ct), where a
(stretching rate) and c are positive constants, with ct < 1.
It is noted that the stretching rate a/(1 − ct) increases
with time since a > 0. The surface temperature of the
sheet varies with the distance x from the origin and time
t and takes the form:

Tw(x, t) = T∞ +
b2x

2ν(1− ct)3/2
, (6)

where b is a constant with b ≥ 0.

A. Similarity Transformation

Following Ishak et al. [10], we introduce the following
dimensionless functions f and θ, and the similarity

variable η.
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(7)

By using the Rosseland approximation, the radiative heat
flux is given by

qr = − 4σ∗

3K∗
∂T 4

∂y
, (8)

where σ∗ and K∗ are respectively, the Stephan-Boltzman
constant and the mean absorption coefficient. Assuming
that the temperature differences within the flow are such
that T 4 can be expressed as a linear function. Expanding
T 4 in a Taylor series about T∞ and neglecting higher
order terms we get

T 4 ∼= 4T∞T − 3T 4
∞. (9)

By using the above transformations, the governing partial
differential equations are transformed into a system of
non-dimensional nonlinear and coupled ordinary differ-
ential equations as follows:

f ′′′ + ff ′′ − f ′2 −A(f ′ +
1

2
ηf ′′)− M

1 +m2
(f ′ +mg) = 0,
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M
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(11)(
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4

3
R

)
θ′′ + Pr(fθ′ − 2f ′θ)− Pr

A

2
(3θ + ηθ′) + δθ = 0,

(12)

Here M2 = σB2
0/ρa, A = c/a is a parameter that

measures the unsteadiness, Pr = ν/α is the Prandtl
number, R = 4σ∗T 3

∞/kKs is the thermal radiation
parameter. The boundary conditions are

f(0) = fw, f ′(0) = 1, θ(0) = 1 g(0) = 0, (13)
f ′ → 0, θ → 0, g → 0, as η → ∞, (14)

where f(0) = fw with fw < 0 or fw > 0 corresponding
to injection or suction, respectively. The physical engi-
neering quantities of interest in this problem are the skin
friction coefficients in the x− and z− directions and the
local Nusselt number number, Nux which are defined
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as:

Cfx = −2µ(∂u/∂y)y=0
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where τw = µ
(

∂u
∂y

)
y=0

is the wall shear stress, and

qw = −κ
(

∂T
∂y

)
y=0

is the surface heat flux, where µ and

κ are the dynamic viscosity and thermal conductivity,
respectively.

III. METHOD OF SOLUTION

If we let f ′ = p then equations (10-12) become
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2
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Equations (16-18) together with the change of
variable f ′ = p may be written as
L1 +N1 = H1 (18)
L2 +N2 = H2 (19)
L3 +N3 = H3 (20)
L4 +N4 = H4 (21)

IV. RESULTS AND DISCUSSION

The numerically results iteratively generated by the
SLLM for the main parameters that have significant
effects on the flow properties are presented in this
section. All the SLLM results presented in this work
were obtained using N = 50 collocation points, and
were are glad to high light that convergence was achieved
as few as six iterations. We take the infinity value η∞
to be 40. The magnetic field is taken quite strong by
assigning large values of M to ensure generation of Hall
currents. Unless otherwise stated, the default values for
the parameters are taken as M = 1, P r = 0.71, σ =
0.5, R = 1, m = 0.5, fw = 1. In order to validate our
numerical method, it was compared to MATLAB routine
bvp4c which is an adaptive Lobatto quadrature iterative
scheme.

In Table I we present a comparison between the
SLLM approximate results and the bvp4c results for

selected default values of the stretching parameter A.
It can be clearly seen from this table that there is
an excellent agreement between the results from the
two methods. Also Table I shows that an increase in
the unsteadiness parameter leads to increases in the
skin-friction coefficients in both directions. Also the
heat transfer gradient increases as the values of the
unsteadiness parameter increase. The negative values of
f ′′(0) mean that the solid surface exerts a drag force
on the fluid. This is due to the development of the
velocity boundary layer which in the current study is
caused solely by the stretching sheet. In Table II we

TABLE I
COMPARISON OF THE SLLM RESULTS OF −f ′′(0), g′(0), − θ′(0)
WITH THOSE OBTAINED BY bvp4c FOR DIFFERENT VALUES OF THE

UNSTEADINESS PARAMETER.

−f ′′(0) g′(0) −θ′(0)

A bvp4c SLLM bvp4c SLLM bvp4c SLLM
1 2.06334 2.06334 0.17552 0.17552 0.95974 0.95974
2 2.27278 2.27278 0.15185 0.15185 1.30759 1.30759
3 2.46650 2.46650 0.134598 0.134598 1.54422 1.54422

display the effect of the magnetic parameter on the
skin friction coefficients and the Nusselt number. The
magnetic parameter M represents the significance of the
magnetic field on the flow properties. As the magnetic
strength increases, the dragging effect is clearly seen
by the significant increments in the skin friction. We
also observe that increasing the values of the Hartman
number leads to the lowering of the values of the Nusselt
number. Application of a strong magnetic field reduces
the velocity which in turn increases heat diffusion within
the fluid flow. This physically explains why heat transfer
at the wall is reduced as M is increased.

TABLE II
COMPARISON OF THE SLLM RESULTS OF −f ′′(0), g′(0), − θ′(0)
WITH THOSE OBTAINED BY bvp4c FOR DIFFERENT VALUES OF THE

MAGNETIC PARAMETER.

−f ′′(0) g′(0) −θ′(0)

M bvp4c SLLM bvp4c SLLM bvp4c SLLM
1 2.06334 2.06334 0.17552 0.17552 0.51730 0.51730
3 2.40060 2.40060 0.41758 0.41758 0.46088 0.46088
5 2.69188 2.69188 0.59380 0.59380 0.43117 0.43117

Table III displays the influence of the Hall current
on the skin friction coefficients as well as the Nusselt
number. The skin friction coefficient is reduced as the
values of the Hall current parameter increase. This
explains why the skin friction coefficient in the axial
direction. However, in the transverse direction the skin
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friction increases as the Hall current increases. There is
slight effect of the Hall current on Heat transfer rate on
the stretching surface. The influence of suction/injection

TABLE III
COMPARISON OF THE SLLM RESULTS OF −f ′′(0), g′(0), − θ′(0)
WITH THOSE OBTAINED BY bvp4c FOR DIFFERENT VALUES OF THE

HALL PARAMETER.

−f ′′(0) g′(0) −θ′(0)

m bvp4c SLLM bvp4c SLLM bvp4c SLLM
0.1 2.2059 2.2059 0.0312 0.0312 0.4978 0.4978
0.5 2.1537 2.1537 0.1311 0.1311 0.5041 0.5041
1.0 2.0633 2.0633 0.1755 0.1755 0.5173 0.5173

parameter fw on the axial velocity is depicted in Fig-
ure 1. The axial velocity is significantly influenced by
this parameter. The velocity boundary layer is greatly
enhanced when fluid is injected (fw < 0) into the flow
system thereby increasing the velocity profiles. However,
removing fluid from the flow system through suction, as
expected drastically reduces the velocity profiles as can
be clearly seen in Figure 1.
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Fig. 1. Graph of the SLLM solutions for the horizontal velocity for
different values of fw.

The effect of the Hall current parameter m on the axial
velocity is shown in Figure 2. The velocity is enhanced
as the values of m increase. However, the axial velocity
profiles approach their classical values when the Hall
current parameter m becomes large (m > 1.5) in our
current study. Any further increase of the Hall current
would make the magnetic effect insignificant.
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Fig. 2. Graph of the SLLM solutions for the horizontal velocity for
different values of Hall parameter

The effect of the Hall current parameter on the trans-
verse velocity is displayed in Figure 3. Increasing the
values of m causes the transverse velocity to rapidly
increase.
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Fig. 3. Graph of the SLLM solutions for the transverse velocity for
different values of the Hall parameter

In Figure 4 we have the effect of the heat source/sink
parameter δ on the temperature profiles. As expected,
it is observed in this figure that the temperature in the
boundary layer increases with increasing values of δ. The
heat absorption due to a uniform sink (δ < 0) leads to
the reduction of the thermal boundary layer thickness,
whereas this layer increases significantly with increases
in δ > 0.
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Fig. 4. Graph of the SLLM solutions of the temperature profiles for
different values of heat source/sink parameter

Figure 5 is plotted to depict the influence of the ther-
mal radiation parameter R on the temperature profiles.
We clearly observe that the temperature in the boundary
layer increases with increasing values of the thermal
radiation parameter. This is due to the fact that the
divergence of the radiative heat flux increases as the
Rosseland radiative absorption K∗ decreases which in
turn increases the rate of radiative heat transfer to the
fluid. Thus the presence of thermal radiation enhances
thermal state of the fluid causing its temperature to
significantly increase.
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Fig. 5. Graph of the SLLM solutions of the temperature profiles for
different values of thermal radiation parameter

V. CONCLUSION

The present work analyzed MHD unsteady flow and
heat transfer of an electrically conducting fluid over

a stretching sheet in the presence of thermal radia-
tion and Hall effect. The governing partial differen-
tial equations are transformed into a system of non-
linear ordinary differential equations by using suitable
similarity variables. The resultant system of non-linear
ordinary differential equations is solved numerically by
the recently developed technique known as the Spectral
Local Linearization Method. The accuracy of the SLLM
is validated against the MATLAB in-built bvp4c routine
for solving boundary value problems. The following
conclusions were drawn in our investigation.

• An excellent agreement was observed between our
results and those obtained using bvp4c routine tech-
nique giving confidence to our present results.

• The unsteadiness parameter A has significant ef-
fects on the velocity components and temperature
profiles. The maximum axial velocity, transverse
velocity and temperature profiles are attained when
the flow is steady (A = 0).

• Increasing the values of the magnetic field strength
decreases the momentum boundary layer thickness
while increasing the thermal boundary layer thick-
ness.

• The velocity components are enhanced as the Hall
parameter increases.

• The fluid temperature increases with increasing
values of thermal radiation as well as a heat source.

• The heat transfer rate and the skin friction coeffi-
cient in the x− direction are increased while the
skin friction in the z− direction decreases as the
unsteadiness parameter increases.

• The skin friction coefficients are enhanced while the
heat transfer rate is depressed by increasing values
of the magnetic strengths.
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