
 

 

Abstract— This paper presents the authors' experience 

with teaching the finite element method (FEM) at a 

university using the MathCAD software. With the 

development of computational tools in the second half of 

the 20th century, there was also the development of 

computational methods aimed at algorithmizing 

engineering tasks based on FEM. This method is very 

effective for determining the forces and deformations of 

truss and frame structures under the influence of the 

external environment. Many processes in the automatic 

design system take place as if in a "black box", and the 

process of verifying the achieved results becomes the most 

important stage in the design activity. Without knowing 

the theoretical foundations of FEM, physical and 

mathematical modelling, verification procedures and 

methods, the structure design cannot be safe and reliable. 

In this paper, we present one of the possibilities, how a 

student can familiarize himself with the theoretical 

foundations of FEM and calculation procedures using the 

MathCAD software. MathCAD can be used as a vehicle to 

create, organize, and assemble all the pieces of the 

engineering calculations. MathCAD is open software for 

using input data from other programs. 

 

Keywords— FEM, MathCAD, Statics, Truss structures, 

Frames, Reliability, Safety, Control.   

I. INTRODUCTION 

HIS paper presents our experience with teaching FEM at 

the university. The study, [1], in 1943, was the first who 

propose the finite element method as it is today. In his 

final analysis, Courant proposed to use the principle of 

stationary potential energy and interpolation functions of 

triangular subregions using polynomials. It was proved that 

continuum mechanics problems (one-, two- and three-

dimensional problems) can be solved by applying a potential 

energy minimum or equivalent functionals. Further 

development of FEM, [2], [3], [4], [5], encountered difficulties 

related to the solution of large-scale systems of simultaneous 

equations at that time, so the development of FEM remained 

on hold until the development of electronic automatic 

computers and the creation of highly efficient programming 

languages was established. 

Currently, there are several world-renowned programs in the 

field of FEM (ABAQUS, ADINA, ANSYS, ALGOR, 

CivilFEM, MARC, MSC PATRAN, NASTRAN, NISA II, 

COSMOS/M, SAP2000 and others). 

The basic problem of using FEM for the safety design of 

building structures without sufficient theoretical knowledge 

and practical experience from the individual stages of creating 

a calculation model and the use of a calculation method in 

terms of knowledge of physical properties and mathematical 

formulations of static problems is that engineers in practice 

make tragic mistakes when designing safety structures. 

In the past, students solved practical examples with FEM 

applications using calculators and paper. This methodology 

was very successful and led students to learn from the 

formulation of tasks, methods of checking the individual 

phases of the calculation, as well as methods of solving them. 

Based on our pedagogical experience, [6], [7], confirmed by 

the opinions of colleagues from abroad [8], [9], engineering 

students must know the theoretical foundations of FEM, as 

well as go through the solution of simple applications to 

understand the essence of the problems in the application of 

FEM in solving engineering problems. 

During doctoral studies, students must be able to develop 

FEM by developing new types of elements, new material 

models, more accurate and efficient calculation methods, and 

complex solutions that consider the interaction of different 

structures. 

MathCAD is perfectly suited for engineering calculations, 

[10], [11], [12]. This software represents the balance of 

exploration, communication, and collaboration of engineering 

calculations with other software Fig. 1. 
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Fig. 1 MathCAD as the open software 

 

The benefit of MathCAD is that your calculations are now 

electronic and can be archived, shared with coworkers, reused 

on other projects, and updated as variables change. Another 

advantage of MathCAD is that your results can be used in 

further calculations. If the variables for the first result change, 

then all the calculations based on that first result are also 

immediately updated. The use of the MathCAD system is of 

great importance in solving traditional engineering problems 

as well as mathematical programming problems. For that 

reason, there is a need to use modern information technologies 

in the educational process to generalize and improve 

traditional methods of solving problems in the field of 

engineering. This problem is reflected in this article. 

The range of tasks performed using this is very wide, and 

their use in many ways helps students to work actively and 

smoothly, increasing the efficiency of the learning process and 

the quality of education. The peculiarity of this software is that 

they have the following capabilities, and their implementation 

is as follows: 

1. perform digital calculations, 

2. perform symbolic (analytical) calculations and changes, 

3. create various graphs, 

4. creation of documents using new multimedia tools,  

    including hypertext and hypermedia links, 

5. integration with other software tools. 

MathCAD software offers us an effective tool for solving 

applications in FEM, [6]. The software allows matrix 

operations, as well as programming tools to define various 

mathematical operations in the creation of the stiffness matrix, 

and the load vector, as well as in the arrangement of the 

analysis results, including the graphical interpretation of the 

results of the deformations of the structure. 

This article presents our experience, [5], [6], [7], in teaching 

FEM to doctoral students using the MathCAD software. 

II. THEORETICAL BASIS OF FEM 

The Finite Element Method (FEM), [2], is one of the most 

effective variational methods for solving continuum mechanics 

problems, as well as gases and liquids and other potential 

problems (electromagnetism, acoustics, heat, ...). Its essence is 

in the division of the construction, or of a continuous body on 

a set of finite elements, connected to each other at dividing 

nodes. Such a discrete system must satisfy the conditions of 

continuity and equilibrium at the dividing nodes. 

The calculation process in FEM can be divided into five 

phases: 

1. Discretization of the structure to a finite number of 

elements  

2. Approximation of deformation or force quantities for 

each element separately, 

3. Integration of finite elements into a whole while 

preserving the conditions of continuity of deformations, 

4. Energy minimization - solution of conditional equations 

and determination of unknown nodal parameters, 

5. Determination of unknown elements - calculation of 

internal forces on individual elements. 

The finite element method is based on the variational 

principle of minimum potential energy or the theorem on the 

virtual work of forces on displacements at the nodes of a 

discretized body. The total virtual work of the forces on the 

given system is defined in the form: 

           
T T T

V V S

dV u b dV u p dS          ,  (1) 

where    is the virtual strain vector,    is the stress 

vector,  u  is the virtual displacement vector,  b  is the 

volume force vector,  p  and is the vector of surface loads.  

The displacement vector is approximated by polynomial 

functions of the form: 

    u   , (2)   

where   is a polynomial matrix and   is a polynomial 

coefficient vector.          (II.2) 

 
1

1

1

n
k

n k

k

P x x






 . (3) 

The vector of unknown parameters of the degrees of 

freedom (DOF)  r   is determined in the nodes of the element 

depending on the selected polynomial after substituting the 

specific coordinates of the nodes of the element into the matrix 

of the polynomial in (2).  Therefore,  

    r A   =>    1A r     . (4) 

 

The Table I presents the approximation functions of 1D 

elements. 

TABLE I. APPROXIMATION FUNCTIONS OF 1D ELEMENTS 

 
 

After substituting (3) into (2) we obtain the shape matrix of 

deformation parameters [N] in the form of 
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           1u A r N r        . (5) 

On the finite element, we generally define a displacement 

vector depending on the vector of initial displacements and 

displacements from a given load in the form of 

      ou u N r  . (6) 

Then we express the strain vector    in the form of 

                ,
T T

o u ou N r           

        ,u o B r      (7) 

where  u is the strain vector from the initial displacements, 

and [B] is the strain-displacement matrix. The initial strains 

 o   usually correspond to the effects of body loading by 

temperature, creep, or shrinkage of the structural material. 

The stress vector  is obtained from the material 

equations, 

                  0 0 0uD D B r           , (8) 

where 0  is the initial stress vector.  

After substituting relations, (5), (7), and (8), into equations 

(1), we get the total virtual work of the forces in the form of 

            

             

T TT

o

V V
T T T

u o

V V V

r B D B dV r B dV

B D dV B D dV N b dV

  

 


  


   

 

  
  

  ) .
T

S

N p dS


   


  (9) 

Based on the virtual work theorem, the expression in 

relation (9), for the equilibrium force system acting on a body 

with volume V and area S must be equal to zero. Then, we 

have algebraic equations in the form of 

 

               

            0 , (10)

 



  

     

  

  

T T T

o u

V V V

TT T

o

V V S

B D B dV r B dV B D dV

B D dV N b dV N p dS

 

where the matrix N 
   is equal to the matrix  N  only on the 

surface S. 

Relations (10) correspond to the equilibrium forces in the 

nodes of the elements, 

                o u b pK r F F F F F F F        , (11) 

where [K] is the stiffness matrix of the element,  r  is a vector 

of nodal deformation parameters of the element,  F is the 

vector of generalized forces at the nodes,  oF and is the 

vector of singular forces at the nodes. Therefore,  

 

      
T

V

K B D B dV  ,           0

T

V

F B dV   , 

      
T

u u

V

F B D dV  ,       0

T

V

F B D dV   , 

     
T

b

V

F N b dV  ,             
T

p

S

F N p dS    . (12) 

The relations in (12) are defined in the local coordinate 

system. It is necessary to transform forces and displacements 

from the local to the global coordinate system. 

We define vectors  
glob

r  and  
glob

F  in the global 

coordinate system as follows: 

    
glob

r T r    and        
glob

F T F . (13) 

By substituting relations (II.12) into (II.10) we get 

      
glob glob

K T r T F , (14) 

and after multiplying the equations from the left by the matrix, 

we have: 

           
T

glob glob globglob
T K T r K r F  , (15) 

 

where      1
T

T T   is in the orthogonal coordinate system. 

The total vector of deformation parameters in the nodes is 

defined on the entire structure. Based on the continuity of the 

elements in the division  nodes, we define the relationship 

between the vector  e
glob

r  and  e
glob

F  the element "e" and 

the total vector  totr  and  totF  as follows 

   e e

totglob
r L r      and     e e

totglob
F L F    , (16) 

where the localization matrix eL    is defined by values equal 

to 1 or 0 as follows 

   e e

totglob
r L r      for   

1

0

e tot

e m i

mi e tot

m i

r r
L

r r

 


 
. (17) 

If the structure consists of n-elements, then the total virtual 

work of the forces is equal to the algebraic sum of the virtual 

work of the forces on individual elements, 

 

     
1 1 1

0.  
  

 
                  

 
  

n n n
TTe e e e e

tot tot totglob
e e e

r L K L r L F

                                                                                             (18) 

From there, we get the overall equations for the state of the 

balance of forces on the given structure, 

    tot tot totK r F , (19) 

where the elements of the overall stiffness matrix of the 

structure are obtained from the stiffness matrices of the 

individual elements 

1

n
tot e e e

ij km ki mj

e

K K L L


     for   
1

0

e tot

e k i

ki e tot

k i

r r
L

r r

 


 
 , 

                                  and 
1

0

e tot

m je

mj e tot

m j

r r
L

r r

 


 
, (20) 

and the elements of the total vector of generalized forces in the 

form 

1

n
tot e e

i k ki

e

F F L


 . (21) 

In the case of linear analysis of structures with elastic 

materials, the solution of the displacement degrees of freedom 

is based on the relation (19) in the form: 
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     
1

tot tot totr K F . (22) 

Next, the vector er on the element “e” is calculated from 

relations (16) and (13). Strain and stress vectors are calculated 

from relations (7) and (8). 

III. TRUSS STRUCTURES 

Truss constructions consist of straight rods connected to 

each other by joint connections. The structural element is 

stressed in tension-compression or buckling. For the case of 

tensile-compressive stress, we define the following fields as 

single-element vectors, 

 u u ,     x  ,         x  . (23) 

The strain is defined as follows, 

,x x

u
u

x



 


. (24) 

The stress vector is defined as follows, 

     .D  , for  D E . (25) 

The displacement vector is approximated by a linear 

function, 

    1 2u u x       , (26) 

where     1 x   and    1 2

T
   . 

The vector of DOF’s parameters    ,
T

i jr u u is defined,  

    1

2

1

1

i i

j j

u x
r A

u x






      
      
      

, (27) 

The polynomial coefficient vector is 

 
 

1 1

2

01 1

1 1 1 1

i ij i

j jj i

u ux x l
A

u ulx x







            

                           
 

 (28) 

for 0ix   and 
jx l  in the interval 0 x l  . 

After substituting (28) for (26) we have 

           1u A r N r        , (29) 

where   ,i jN N N    , 
1

2
i

l x
N

l

 
  , 

1

2
j

x
N

l


  . 

and 1i jN N   on the element in Fig. 2.  

The deformation matrix [B] is obtained from (7) 

   1/ ;1/
T

B l l  . (30) 

 
Fig. 2 Shape functions on an element 

 

The stiffness matrix of the element is given by (25), (30) 

and (12) 

 
1 1

1 1

ES
K

l

 
  

 
 (31) 

The transformation of a local vector  r  to a global vector 

 
glob

r  is defined in (13). Therefore, we have  

- 2D structure 

 
cos( ) sin( ) 0 0

0 0 cos( ) sin( )
T

 

 

 
  
 

 for 2D (32) 

 cos
j ix x

l



 ,        sin

j iy y

l



 . 

 

- 3D structure 

 
cos( ) cos( ) cos( ) 0 0 0

0 0 0 cos( ) cos( ) cos( )
T

  

  

 
  
 

 

 cos
j ix x

l



 ,  cos

j iy y

l



 ,  cos

j iz z

l



 , 

 

where the angles α, β, γ are between the local and global axes 

xx , yy , zz . 

IV. FRAME STRUCTURES 

Frame structures are discretized by beam elements. These 

elements are defined based on Euler-Bernoulli or 

Timoshenko's theory. Euler-Bernoulli's hypothesis assumes the 

preservation of the angle of the normal section after beam 

deformation. Timoshenko's theory assumes the occurrence of 

shear deformations and thus the normal section on the axis of 

the bar does not maintain its normal direction but rotates. 

In the case of 2D stressing of the beam for tension-

compression, bending, and shear, we have: 

   , ,
T

zu u v  ,    ,
T

x xy   ,    ,
T

x xy    (33) 

Based on the Euler-Bernoulli hypothesis (the normal to the 

axis of the beam before deformation is normal after 

deformation), we have 

     , .s zu x y u x y x  ,    , sv x y v x , (34) 

where  su x ,  sv x are the displacement of the beam axis, 

 z x  is the rotation of the beam section. Next, we have 

 
( )s

z

dv x
x

dx
  . (35) 

In the case of the Timoshenko hypothesis, the pseudo 

rotation of the normal  y x  is defined from the strain- 

displacement relation as follows: 

 
   , ,

,xy

u x y v x y
x y

y x


 
 

 
. (36) 

After we substitute the (2) to (4), we have: 

 
( )

( )s

z y

dv x
x x

dx
   , (37) 

where ( )y x  is the constant shear strain in the z coordinate. 
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Fig. 3 2D - Beam element 

 

The strain  ,x x y  is defined from the equation (2) 

 
( ) ( )

, .s z

x

du x d x
x y y

dx dx


   . (38) 

The stress-strain relations are defined in eq. (8), where the 

matrix [D] is 

 
0

0

E
D

G

 
  
 

. (39) 

The initial stress due to the temperature T (x, y) and the 

initial temperature To is defined as follows 

    , 0
T

o T oT T   . (40) 

The internal forces on the beam N(x), M(x) and V(x) are 

defined as follows: 

 

   .x

S

N x x dS  ,               . .z x

S

M x y x dS  , 

   .y xy

S

V x x dS   (41) 

Considering eq. (8), (7) and (9), we have 

  . s

t

du
N x ES N

dx
  ,         . z

z z t

d
M x EI M

dx


  , 

  s

z

dv
V x GS

dx
 

 
  

 
, (42) 

where S is the cross-section of the beam, Iz is the moment of 

inertia of the cross-section, and κ is the shear coefficient of the 

cross-section. 

The internal forces of the beam Nt(x), Mt(x) caused by the 

influence of temperature are defined as follows: 

.
2

d h

t t o

T T
N ES T

 
  

 
, . d h

t z t

T T
M EI

h



 . (43) 

The local vector of DOF ‘s  r and forces  F on the beam 

element in Fig. 3 is as follows: 

 

   , , , , ,
T

i i i j j jr u v u v  , 

   , , , , ,
T

xi yi zi xj yj zjF F F M F F M . (44) 

 

The displacements u(x), v(x), and rotation z(x) on the beam 

after the substitution of (1 ) / 2x l   are as follows: 

 

  1 2i ju N u N u   ,   1 2i jN N     , 

  3 4 5 6i i j jv N v N N v N      , (45) 

 

where the shape functions are as follows 

 

 1 1 2N   ,    2 1 2N   ,    2

3 1 2 3 4N     , 

   2

4 1 . 1 8N L     ,   2

5 1 2 3 4N     , 

   2

6 1 . 1 8N L      . 

 

Then, the beam element shape matrix is as follows: 

 
1 2

3 4 5 6

1 2

0 0 0 0

0 0

0 0 0 0

N N

N N N N N

N N

 
 


 
  

. (46) 

The virtual work of the internal forces on deformations is 

       

        

0
V

1

0
1

=

2 ,

    

  


 
  

 

 

  

 

lT T

S

l T T

A dV dS dx

q Q dx q Q l d

 (47) 

where    , , ,= , ,
T

x x xq u v  is the deformation vector and 

   = , ,
T

x z yQ N M V is the vector of the internal forces. 

  

Then we have 

    = DQ q 
  , where 

0 0

0 0

0 0

z

ES

D EI

GS

 
      
  

 (48) 

The deformation vector  q is defined from the eq. (36) and 

(38) as follows: 

        
T T

q u N r B r               , (49) 

where the matrix B 
  is as follows 

   
 22

2 2

1 1
0 0 0 0

1 1
0 0 0 0

3 2 13 3 2 1 3
0 1 0 1

2 8 2 8

l l

B
l l

l l

  
 

 
 
 
 

     
 
    
   
 

.  

After substituting the eq. (49) to (47), we have 
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          

    

1 1

1 1

= 2 2
TT T

T

A q Q l d r B D B l d r

r K r

    



 

 
            

 



 

 (50) 

where  K  is the stiffness matrix of the beam element, 

 

   

   

 

 

2 2

2

1 2 1 2
0 0 0 0

2 2

6 3 6 3
0

3
2 0 1

1 2
0 0

2

6 3
.

2

z z

o

z

S S

I I

l ll l

K k l

S

I

sym
ll

 

 





   
 

 
 

   
 
 

  
  

 
 
 
 
 
 
  

, 

         
 

2

1 2

z

o

EI
k

l 



,  26 zEI GSl  . (51) 

The vector of generalized forces from the continuous 

pressure on the element py (x) is expressed from the relations 

(12) in the form of 

 

         
0 0 0

0

0

xL L L
T T T

p y y

z

p

F N p dx N p dx N p dx

m

   
   

     
   
   

   , 

 (52) 

 

2 2 3 3

2 3 2

0

2 2 3 3

2 3 2

0

1 3 2

2

0

3 2

l

p y

x L x L

x x L x L
F p dx

x L x L

x L x L

 
 
 

 
  

  
 
 
 

   

 . 

In the case of constant pressure py(x) = py = const. we have 

  2 20 2 12 0 2 12
T

p yF p L L L L    . (53) 

The reaction vector is defined in the form: 

   
T

xi yi zi xj yj zjR R R M R R M ,  

 with support, we get from the condition equations 

      R K r F  . (54) 

The vector of internal forces on the beam i – j is defined as 

follows: 

    
T

i i i j j jp N V M N V M , 

 

    p S R , and   

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

S

 
 
 
 

  
 
 
 
  

, (55) 

where  S  is the static matrix on the beam element in the local 

coordinate system. 

The vector of DOF parameters and generalized forces in the 

global coordinate system in the case of a frame structure in the 

XY plane is of the form 

 

     .
glob

r T r ,          .
glob

F T F      or  

     .
T

glob
r T r ,       .

T

glob
F T F , (56) 

where  
   

 
i

j

T 0
T

0 T

 
  

    

,  
 

 

cos( ) sin 0

sin cos( ) 0

0 0 1

i i

i i iT

 

 

 
 

  
 
 

, 

the angle 
i (or 

j ) is the angle between the support at node i 

and the x-axis of the beam. 

In the case of 3D straining of the beam, we have tension-

compression, bending and shear, 

   , , , , ,
T

x y zu u v w    ,  (57) 

   ,
T

x xy yz zx     ,        , , ,
T

x xy yz zx     .  

Based on the hypothesis of preservation of cross-section 

planarity and rotation of the pseudo-normal, we have 

       , , . .s z yu x y z u x y x z x    , (58) 

where  su x are the displacements of the node on the axis of 

the beam and  y x ,  z x , are the rotations of the beam 

cross-section around the Y and Z axes, while the rotation of 

the cross-section can be considered according to Euler-

Bernoulli (the normal will retain its orientation after 

deformation) or according to Timoshenko's hypothesis (the 

rotation of the pseudo-normal consists of the rotation of the 

normal and also the skew angle due to shear deformation) 

similarly to the previous section. 

The vector of DOF‘s parameters and the vector of 

generalized forces on an element in a local coordinate system 

are defined in the form 

   
T

i i i xi yi zi j j j xj yj zjr u v w u v w      , 

   
T

i jF F F , (59) 

   
T

i xi yi zi xi yi ziF F F F M M M ,

   
T

i xi yi zi xi yi ziF F F F M M M . 

V. SOLVING TRUSS STRUCTURE BY USING FEM 

Example V.1 - Calculate the value of displacements and 

internal forces under the action of singular forces using the FE 
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method in the MathCAD software on the truss structure (Fig. 

4). 

P2 P2

P1

X

Y

1 2

3 4

 1  2

 3

 4 5

1

1

 
Fig. 4 Scheme of the truss structure 

 

A) Input data: 

The structural geometry, loads, boundary conditions, and 

identification of nodes and elements are shown in Fig. 4. 

Geometrical and physical input data are defined in further 

procedures: 

- Geometric characteristics of cross sections: 

   2: 500 250 500 500 250 . TA mm  (60) 

- Material characteristics: 

 6: 210.10 . .E kPa  (61) 

- Load defined in nodes on the global x and y axis: 

 
1 0 88

: : . .
2 44 88

Fu uL F kN
   

    
    

 (62) 

- Node coordinate system: 

   : 30.deg , : .u rot un rows    (63) 

- Boundary conditions: 

(0–the shift is bound, 1-the shift is free) 

Bounds are defined in the form: Node – X bound– Y bound 

3 0 0
:

4 0 0
Bounds

 
  
   (64) 

- Geometry description: 

   Node coordinates are defined in the following matrix: 

0 1 0 1
:

1 1 0 0

TNodes m
 

  
 

 (65) 

   The numbering of nodes by elements is defined in the 

localization matrix: 

1 4 1 2 3
:

3 1 2 4 2

TLocal
 

  
 

 (66) 

- The number of structural nodes can be determined as 

follows: 

  :nodesn rows Nodes  (67) 

- The number of structural elements can be determined as 

follows: 

  :elemn rows Local  (68) 

- The number of nodes on an element is defined as follows: 

 : 2penn   (69) 

- The number of degrees of freedom (DOF) in nodes is defined 

as follows: 

 : 2pnndof   (70) 

- The number of DOF on an element is defined as follows: 

 : .pe pe pnndof nn ndof  (71) 

- The element length is calculated as follows: 

 : 1... elemi n  (72) 

 

 

,2 ,1

,2 ,1

2

,1 ,1

1

2 2

,2 ,2

:
i i

i i

i Local Local

Local Local

L Nodes Nodes

Nodes Nodes


  



  

   
- The orientation of the elements is defined as follows: 

  
,2 ,1,1 ,1

:
i iLocal Local

i
i

Nodes Nodes
c

L


  (73) 

  
,2 ,1,2 ,2

:
i iLocal Local

i
i

Nodes Nodes
s

L


 . (74) 

 

B) Definition of procedures for calculating the numerical code 

of nodes and elements 

The code number of nodes and elements is calculated using 

MathCAD program procedures. 

- Procedures for calculating the numerical code of nodes: 

 

 

 

 

   

   

,

,1 , 1

, ,1 , 1

, :

0

1..

1..

1

1..

1 0

0 0

i j

k k j

i j k k j

Codenod Bounds Nodes

n

for i rows Nodes

for j cols Nodes

n n

A n

for k rows Bounds

n n if Bounds i Bounds

A if Bounds i Bounds

A













 





    

   

 (75) 
- Procedures for calculating element code numbers: 

 

 

 

 

   

 ,,
,

, :

1..

1..

1..

1

Local ki j

Nod

Nod

Nod

i l Nod

Codeele Local Code

for i rows Local

for j cols Local

for k cols Code

l j cols Cede k

A Code

A









   



 (76) 
The global force vector is calculated using the code number 

vector. 
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 

 

 

 

 

 

 
, , , ,

, , :

1..max

0

1..

1..

1..

0
i j i j k j k

u u

i

u

Code Code u i j u

Fglob F L Code

nel cols Code

for i Code

A

for i rows Code

for j cols Code

for k rows L

A A F if Code L i

A















    

 (77) 
- Procedures for calculating the total stiffness matrix of the 

structure using the numerical code of the elements: 

 

 

 

 

 

 

 

 

 
, , , ,

,

, , , 1

, ,

, :

1..max

1..max

0

1..

1..

1..

/

/ 0

i j i k i j i k pe

i j

Code Code Code Code j i ndof k

i j i k

Kglob KT Code

nel cols Code

for i Code

for j Code

A

for i rows Code

for j cols Code

for k cols Code

A A KT

if Code Code

  

















 

 
 (78) 

- Procedure of decomposition of the vector of deformation 

parameters for elements: 

 

 

 

 

 

 
,

,

, ,

_ , :

1..

1..

0

1..

1..

0
Codei j

glob

j i

j i glob i j

r elem r Code

for i rows Code

for j cols Code

A

for i rows Code

for j cols Code

A r if Code

A













 

 (79) 
C) Calculation of the local and global stiffness of the matrix 

- The element stiffness matrix in the local coordinate system is 

equal to 

  

 
1 1

: : .
1 1

i
i i

i

A
ko E Kel i ko

L

 
    

   (80) 

- The element transformation matrix is defined as follows: 

   
0 0

: .
0 0

i i

i i

c s
T i

c s

 
  
 

    (81) 

In case of a rotated support, we define the node coordinate 

system in the given node αu. There are procedures for 

calculating transformation relations. 

 

 

 

 

  

,

, ,2

,1 , ,2

cos , , :

1..

1..

1..

cos cos /

/ 0

rot

i j i

rot

i j i k

k i j k

Tu c Local

n rows

for i rows Local

for j cols Local

A c

for k n

A a c if

Local

A







 













 

  

 (82) 

 

 

 

 

  

,

, ,2

,1 , ,2

sin , , :

1..

1..

1..

sin sin /

/ 0

rot

i j i

rot

i j i k

k i j k

Tu s Local

n rows

for i rows Local

for j cols Local

A s

for k n

A a s if

Local

A







 













 

  

 (83) 

 

- The oriented cosine of an angle is defined as follows: 

  : cos , , uCu Tu c Local  . (84) 

- The oriented sinus of an angle is defined as follows: 

   : sin , , uSu Tu s Local  . (85) 

    
,1 ,1

,2 ,2

0 0
: .

0 0

i i

i i

Cu Su
T i

Cu Su

 
  
 

    (86) 

- The element stiffness matrix in the global coordinate system 

is calculated from the local stiffness matrix and transformation 

matrix: 

       lg : . .
T

e elK i T i K i T i .                                         (87) 

- The element load vector in the global coordinate system is 

calculated from the vector in the local coordinate system: 

   
1 0 88

: : . ,
2 44 88

Fu uL F kN
   

    
    

 (88) 

   : , ,
uglob u F NodF Fglob F L Code .                                     

(89) 

- The boundary conditions are defined in the following matrix: 

   
3 0 0

.
4 0 0

Bounds
 

  
 

 (90) 

- Structure node code numbers are calculated using the 

following procedure: 

    : , ,nodCode Codenod Bounds Nodes  (91) 

   
1 3 0 0

.
2 4 0 0

T
nodCode

 
  
 

 (92) 
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- Structure element code numbers are calculated using the 

following procedure: 

    : , ,ele NodCode Codele Local Code  (93) 

  

1 0 1 3 0

2 0 2 4 0
: .

0 1 3 0 3

0 2 4 0 4

T
eleCode

 
 
 
 
 
 

 (94) 

- The maximum number of unknown parameters is calculated 

from the matrix of code numbers: 

   : max , 4.tot ele totn Code n   (95) 

- The global element stiffness matrices are inserted into one 

KT-matrix: 

   : 1..q ndof , (96) 

   
 

 
. 1

lg:peq ndof i q

eKT K i


  (97) 

- The global structure stiffness matrix is calculated from the 

following relations using the matrix of code numbers of the 

Structure: 

   : ,glob eleK Kglob KT Code , (98) 

  1

123.6 18.6 105 0

18.6 123.6 0 0
. . .

105 0 123.6 18.6

0 0 18.6 123.6

globK MN m

  
 
 
 
 
 

 (99) 

- The unknown DOF can be calculated as follows: 

   1: . ,glob glob globr K F  (100) 

    1.36 0.92 1.43 0.5 . .globr mm      (101) 

- Calculation of displacement vectors in elements in LCS: 

  Displacement vectors in elements are defined as follows: 

   : _ , ,tot glob eler r elem r Code  (102) 

 

  

1.356 0 1.356 1.434 0

0.916 0 0.916 0.497 0
.

0 1.356 1.434 0 1.434

0 0.916 0.497 0 0.497

totr mm

   
 
   
   
 

   

. 

 (103)

) 

The vectors of degrees of freedom of the system (DOF) by 

elements are defined as follows: 

  : . ,
i

ele totr T i r  (104) 

 

0.916 0 1.356 0.497 0

0 0.311 1.434 0 1.365
eler mm

 
  

   . (105) 
The element vectors of forces in the LCS are calculated as 

follows: 

  :
i i

ele el eleF K i r  , (106)  

96.2 11.6 8.2 52.2 50.7

96.2 11.6 8.2 52.2 50.7
eleF kN

 
  

    
. (107) 

- Graphic control of the truss deformations 

    To display the deformed shape of the structure, it is 

necessary to calculate the relative limits of the structure.  

We determine the maximum displacement value as follows: 

 mr max max rtot  min rtot   ,  

 31.434 10rm x m . (108) 

The interpretation scale is: 

  
  1max

: . .k
r

L
p m m

m

 
  
 

,    198.644p m . (109) 

The geometry of the deformed structure is presented in Fig. 5. 

 

The geometry of the structure deformation shape is defined as 

follows: 

xplot
i 1

xnLokal
i 1

p rtot
1 i



yplot
i 1

ynLokal
i 1

p rtot
2 i


 

xplot
i 2

xnLokal
i 2

p rtot
3 i



yplot
i 2

ynLokal
i 2

p rtot
4 i


 

xplot
i 3

xnLokal
i 1

p rtot
1 i



yplot
i 3

ynLokal
i 1

p rtot
2 i


 

  
i 1 nelem

          
j 1 cols xplot 

         
k 1 nnode

 
(110) 

 

 
Fig. 5 Original and deformed structure of the truss 

 

VI. FRAME SOLUTION USING FEM 

Example VI.1 - On the frame structure (Fig. 6), calculate the 

value of displacements and internal forces under the action of 

singular forces using the FE method in the MathCAD 

software. The numbers of nodes and elements, as well as the 

orientation of the local x-axis, are marked in the Fig. 6.  
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Fig. 6 Static scheme of the frame with loads 

 

A) Input data: 

  The structural geometry, loads, boundary conditions, and 

identification of nodes and elements are shown in Fig. 6. 

Geometrical and physical input data are defined in further 

procedures: 

- The geometrical characteristics of the cross-sections are 

defined for a rectangular cross-section using b and h: 

  : 0.6 0.6 0.3 .Tb m , (111) 

  : 0.6 0.6 0.6 .Th m . (112) 

The number of elements is calculated as follows: 

  : , : 1..elem elemn rows b i n  . (113) 

The cross-sectional area A and moment of inertia of the 

cross-section I  are calculated as follows: 

:i i iA b h  , (114) 

 
31

:
12

i i iI b h   . (115) 

- Material properties are defined as follows: 

5
: 30 : 0.43 :

6
E GPa G E      . (116) 

- Element load is defined as follows: 

 1: 10 : 3e pp kN m L    , (117) 

 :p pn rows L . (118) 

- Node load is defined as follows: 

  1
1 : 100 : 1 : 0 0

uF u

P
P kN L F

kN

 
     

 
,  (119) 

 :
uF Fn rows L . (120) 

The definition of the code coordinate system is the same as 

in (61). (0–the DOF is bound, 1-the DOF is free, 2-DOF is 

independent) 

 

  Kinematic boundaries are defined in the following form: 

  Bounds:     Node – U – V – Φ, 

2 1 1 2

: 3 0 0 0

4 0 0 0

Bounds

 
 

  
 
 

. (121) 

  Static boundaries are defined as follows: 

(0-the bound is free, 1-the bound is bound) 

 

 Release: element – u1, v1, φ1, u2, v2, φ2 

2 0 0 0 0 1
:

3 0 0 0 0 2
Release

 
 
 

. (122) 

- Description of frame geometry: 

   The node coordinates are defined in the following matrix: 

0 6 0 6
:

3 3 0 0

TNodes m
 

  
 

. (123)

   The location of the elements and nodes is defined by the 

following matrix: 

3 1 4
:

1 2 2

TLocal
 

  
 

. (124) 

The number of structure nodes is the same as in (65). The 

number of elements is the same as in (66). The number of 

element nodes is the same as in (65). 

The number of degrees of freedom in nodes is: 

: 3pnndof   (125) 

The calculation of the beam length is the same as in (70), 

and the orientation of the beams is the same as in (71, 72). 

B) Definition of procedures for calculating the numerical code 

of nodes and elements: 

 

Code numbers by nodes are defined by the following 

procedure: 

 

 

 

 

   

   

 

,

,1 , 1

, ,1 , 1

, 1 ,1

, 1

, :

0

1..

1.. 1

1

1..

1 0

2

1 /

/

i j

k k j

i j k k j

k j k

k j

Codenod Bounds Nodes

n

for i rows Nodes

for j cols Nodes

n n

A n

for k rows Bounds

n n if Bounds i Bounds

A n if Bounds i Bounds

n n Bounds if Bounds i

Bounds















 

 





    

   

    

  

   , ,1 , 1

2

0 0i j k k jA if Bounds i Bounds

A

   

(126) 
The definition of the procedure for calculating beam code 

numbers is the same as in (75). The definition of the procedure 

for calculating the numerical release codes is as follows: 
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 

 

 

 

 

 

, ,

, , , 1 ,1

, 1

mod Re , :

1..

1..

1.. Re

Re 1 Re

Re 0

i j i j

i j i j k j k

k j

kod lease Code

for i rows Code

for j cols Code

A Code

for k rows lease

A Code lease if lease i

lease















    



(127) 

 

The procedure for calculating the total stiffness matrix is the 

same as in (77). 

The global load vector at the nodes is calculated by the 

following procedure: 

 

 

 

 

 
, , , ,

, , , :

1..

1..

1..

0
i j i j k j k

u u

u

Code Code u i j u

Fglob A F L Code

for i rows Code

for j cols Code

for k rows L

A A F if Code L i

A









    

 (128) 

The global load vector at the elements is calculated by the 

following procedure: 

 

 

 

 

 
, , , ,

, , :

1..

1..

1..

0
i j i j j i

e

e

Code Code e i j

Pglob A F Code

for i rows Code

for j cols Code

for k rows F

A A F if Code

A









  

 (129) 

The decomposition of the vector of deformation parameters 

for the elements is the same as in (78). 

The node code number matrix is defined as follows: 

 

 : ,nodCode Codenod Bounds Nodes  

1 4 0 0

2 5 0 0

3 6 0 0

T
nodCode

 
 

  
 
 

 (130) 

 (126) 

 (127) 

The element code number matrix is defined as follows: 

 : ,ele nodCode Codeele Local Code

 (130) 
0 0 0 1 2 3

1 2 3 4 5 6

0 0 0 4 5 6

eleCode

 
 

  
 
 

 (131) 

 
The maximum number of unknown parameters is as follows: 

 : max 7tot ele totn Code n   (132) 

- Definition of the beam stiffness matrix in the local 

coordinate system (LCS): 

 

The relative stiffness in bending and shear is defined by the 

following parameter: 

6 1
: i

i
i i

E I

G A L m




 
 

  
 (133) 

2 4

1 1 1 1
: : : :A A L L I I E E

m kPam m
         (134)

 (133) 

 (134) 

 

 
 

(VII…29) 

 (135) 

 

- The beam transformation matrix is defined in the following 

matrix: 

 

0 0 0 0

0 0 0 0

0 0 1 0 0 0
:

0 0 0 0

0 0 0 0

0 0 0 0 0 1

i i

i i

i i

i i

c s

s c

T i
c s

s c

 
 
 
 

  
 
 
 
 
 

. (136) 

 (136) 
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5

7

5

5 5 5

7 7 7

5 7 4

0 9.093 10 0

0 3.598 10 0

0 2.706 10 0
:

9.093 10 3.839 10 3.839 10

3.598 10 6.711 10 6.711 10

2.706 10 8.398 10 2.389 10

totr







  

  

  

  
 
 
 

  
  

      
   
 
      

In the case of rotated support, we define the node coordinate 

system at the given node αu: same as in (81, 82, 83, 84) 

 

,1 ,1

,1 ,1

,2 ,2

,2 ,2

0 0 0 0

0 0 0 0

0 0 1 0 0 0
:

0 0 0 0

0 0 0 0

0 0 0 0 0 1

i i

i i

i i

i i

Cu Su

Su Cu

T i
Cu Su

Su Cu

 
 
 
 

  
 
 
 
 
 

. (137) 

 (137) 

The calculation of the beams stiffness matrix in the global 

coordinate system is the same as in (87). 

The beam load vector in the global coordinate system is 

defined as follows: 

:e e

m
p p

kN
  , (138) 

: 1.. :
np

p pj n k L  , (139) 

 
2,

:
2

p j

Lp j

e L

pe

p L

F

 

 , (140) 

 
3,

2

:
12

p j

Lp j

e L

pe

p L

F

 
  

 
 ,  

5, 2, 6, 3,
: :

L L L Lp p p pj j j j
pe pe pe peF F F F   , (141) 

  :
i

el peF i F . 

  

The transformation of the beam load vector to the global 

coordinate system is as follows: 

 

: 1.. : 0
jtot globj n F  , (142) 

     lg :
T

e elK i T i F i  , (143) 

 lg:
i

e eF F i , (144) 

 : , ,glob glob glob e eleF P F F Code . (145) 

 

The global frame load vector from the singular forces at the 

nodes is defined as follows: 

 : , , ,
uglob glob u F nodF Fglob F F L Code , (146) 

 100 0 0 90 0 45T
globF    . (147) 

The calculation of the global structure stiffness matrix is the 

same as in (96, 97).  

The composition of the matrix of the total stiffness of the 

structure from the stiffness matrices of the elements is the 

same as in (98). 

- Calculation of displacement vectors in beams in LCS: 

The displacement matrix in the elements is calculated as 

well in the relation (102) 

 

 

 

 

 

 

 

                                                                                .       (148) 

 

   

 

 

 

 

 

The beam force matrix at the elements in LCS is calculated 

as well in the relation (106) 

 

1.295 94.569 1.208

5.431 1.295 21.399

15.447 5.224 0.13

1.295 68.601 1.208

5.431 1.208 21.399

5.224 0 45

eleF

   
 

 
  

  
 

   
 
 
 

. (149)

  

 

- Graphical control of the frame deformations is based on the 

calculation of the maximum value of the displacements as 

follows: 

    : max max , minr tot totm r r   

42.389 10rm x  . (150) 

The interpretation scale is defined as follows: 

 max
: . k

r

L
p m

m
     32.511 10p x . (151) 

The geometry of the deformed structure in Fig. 7 is defined 

by the following relations: 

 

xplot
i 1

xnLokal
i 1

p rtot
1 i



yplot
i 1

ynLokal
i 1

p rtot
2 i


 

xplot
i 2

xnLokal
i 2

p rtot
3 i



yplot
i 2

ynLokal
i 2

p rtot
4 i


 

xplot
i 3

xnLokal
i 1

p rtot
1 i



yplot
i 3

ynLokal
i 1

p rtot
2 i


 

  
i 1 nelem

          
j 1 cols xplot 

         
k 1 nnode

. 

(152) 
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Fig. 7 Original and deformed frame structure 

VII. CONCLUSION 

This paper presents the experience of teaching FEM at the 

university. We currently use mathematical software such as 

MathCAD to solve truss and frame structures. Not knowing 

the essence of the problems leads to unprofessional and 

ineffective solutions to the static problem. The authors offer 

the readers of this article, those interested in the presented 

problems, the original library of applications in MathCAD 

software created by the authors and used at the university for 

teaching the finite element method for free. 
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