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Abstract— Underwater Wireless Sensor Network, often
known as UWSN, is an appealing research zone because of
the mysterious aspect of the ocean. A network of sensor
nodes and vehicles that work together as part of the
UWSN to collect information and carry out activities in
collaboration. Because of the sensor nodes and the limited
battery capacity, it is essential for UWSN to have an
efficient network. The significant delay in propagation,
network dynamics, and probability of error all influence
underwater communication, making it difficult to
exchange or update sensor nodes. This article put up the
idea of a Grid-oriented underwater wireless sensor
network (GO-UWSN) and carried out an analysis based on
the criteria of energy consumption, utilization, average
transmission delay, average jitter, average path loss and
average E- 2- E delay in various modes.
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protocols, LAR1, DSR, AODV, OLSR DYMO.

I. INTRODUCTION

Because water covers one third of the surface of the
globe, the ocean has a significant impact on human life [1].
Due to the rugged character of the undersea environment, only
a tiny section of the sea's influence on the environment state
has been investigated [2—4]. Monitoring has become important
in recent years due to the discovery of a chemical poison, an
underwater natural resource, and oil spillage [5,6]. Underwater
sensor nodes form a small-scale cluster based underwater
acoustic network (UAN) by accumulating data through the use
of point-to-point communication [7-9]. Sensor nodes are
typically fastened to presage or GPS systems, or they may be
permanently installed on the surface of the water in UANSs.
Underwater wireless sensor networks, also known as UWSN,
are being developed [8]. These networks will have a low price
point, few restrictions on their functions, and will be easily
implemented. The use of a wireless sensor network, often
known as WSN, is an important step in unraveling the enigma
of the environments found underwater. Underwater sensor
nodes (SNs), also known as SNs [10,12].
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The study of unexplored ocean [11] has sparked interest
in the internet of underwater things (IoUT), which aims to
contribute to the solving of issues in various fields, including
the military, the scientific community, the security industry,
and more. The amount of energy that is used and the quality of
the links that are used to convey data are two major
considerations in UWSN [11-14]. The task of SN becomes
more difficult and costly as a result of the mobility of the
water [13, 14]. Because of the frequent reorganisation of the
topology of the network, hop-to-hop communication uses
significantly less power than end-to-end transmission [15].
When any node in the network wants to transfer data to
another node in the network AODV [14,15] creates a path
between the nodes in the network. A route table is kept up to
date between the source and the destination.. The architectural
diagram of GO-UWSN is as shown in the figure 1.

Fig 1. GO-UWSN Architecture

II. NETWORK SCENARIO

In Figure 2 the proposed view of GO — UWSN is
shown with 50 nodes consists of 20 users, 15 sensors and 15
ships. Out of 50 nodes 20 nodes were used for CBR for
generating the traffic. Figure 3 shows the 3D view of proposed
GO-UWSN.


mailto:communications.sathish@gmail.com

INTERNATIONAL JOURNAL OF COMMUNICATIONS
DOI: 10.46300/9107.2022.16.8

Fig 3. Proposed GO-UWSN 3D view

Parameter Values
Nodes 50
Channel Model Underwater Channel
Area of node deployment 1500 x 1500
(meter square)
Range(Tx/Rx) of sensor Sm
nodes
Routing Protocols DSR,AODV, DYMO,
LARI,OLSR
Source of Generation Constant bit rate
CBR number 20
Run time in sec 500
Medium Access Control Wireless LANs
Protocol
RPS voltage 6.5v
Packet size in words 1024
Communication link Wireless
Wireless channel frequency 1000kHz

Table 1 : Mock —up attributes of the G-UWSN are listed.

In the GB-UWSN paradigm, the sensors nodes (SNs) are
spread out in a grid pattern throughout the area 1500m by
1500m to collect sensing data. The wireless LANs physical
and MAC layer specifications are utilized in this network,
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which consists of 50 nodes. In the work that is being
suggested, packet size is referred to as item size.

II1. SIMULATION RESULTS

In this section, the simulation environment is broken down
and discussed. Using the QualNet 7.1 software, a simulation
of the proposed GB-UWSN was carried out. In addition to
software, simulation requires some kind of physical hardware..
In Table 1, we show the simulation parameter values that were
used to simulate the DYMO, DSR, LARI1, OLSR and AODV
routing protocols that were suggested for use in the GB-
UWSN. In this part of the report, the functionality of the MG-
UWSN was evaluated with the use of five different routing
protocols: AODV, DSR, DYMO, LAR1 and OLSR.

A. Energy Consumption in Transmit mode

The amount of power expended by nodes in the
transmission of data from their point of origin to their point of
destination.

B. Utilization

A communication channel's throughput is the percentage of
packets that are effectively transferred from the transmitting
node to the receiving node.

C. Average Path loss

The term "path loss," also known as "path attenuation,"
refers to the gradual reduction in power density that any
electromagnetic wave experiences as it travels through space.

D. Average Jitter

It refers to the difference in time that occurs between
individual packets as a result of changes in route or network
congestion. In order for a routing protocol to work more
effectively, it should be lower. Congestion on a network,
changes in its routing, or timing drift can all contribute to jitter
by causing a delay in transmission between individual packets.

The following graphs are the simulation results of proposed
GB- UWSN with respect to Energy consumption in three
different modes, utilization, Avg. tx. delay, path loss, jitter,
E-2-E delay for AODV, DSR, DYMO,LARI and OLSR
protocols.
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Parameter Protocol
OLSR | DSR | AODV | LAR1 | DYMO
Average 650 700 280 560 610
transmission delay
(usec)
Average E2E 1.89 4.1 6 87 1.93
delay(sec)
Receive power 0.23 0.2 0.18 0.12 0.14
consumption(mWh)
Idle power 0.12 | 0.13 0.12 0.13 0.12
consumption
Transmit power 0.1 0.1 0.05 0.05 0.1
consumption
Percentage of 65 70 28 56 61
Utilization
Average jitter 044 | 144 4.9 5.41 1.08
(sec)
Average 26.65 | 25.75 | 26.23 | 26.46 | 25.88
Pathloss(dB)

Table 2: Comparison of different parameters for routing

protocols
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IV Conclusion

In order to send the information from underwater channel to
destination node the Grid oriented architecture is used. The
results show that OLSR performed in terms of receive power
efficiency with 10% , DSR in point of average transmission
delay of 14%, DSR with respect to utilization of 40% , DYMO
and LARI in view of E-2-E delay and average jitter. The
results have been carried out average of 50 nodes with respect
to OLSR, DSR, AODV, LARI and DYMO. Comparatively,
OLSR and DSR performance is better than the remaining
protocols.
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