
Abstract- The hidden-nodes and noise uncer-
tainty have a negative impact on the spectrum
sensing results in cognitive radio. Accordingly,
cooperative spectrum sensing is proposed to ef-
fectively increase detection reliability by dealing
with different soft and hard patterns in the fusion
center. In the present work, we analyzed various
soft and hard fusion rules. Improved Square Law
Combining (SLC) rules are proposed to provide
better detection performance than the conven-
tional scheme. To validate the introduced rule,
MATLAB simulations were conducted revealing
the out-performance of the proposed schemes
over the conventional one even in a critical wire-
less environment with a low signal-to-noise ratio.
The proposed approach is then more advanta-
geous because it minimizes the trade-off between
detection performance and computational com-
plexity.

Keywords- Cognitive radio, cooperative spec-
trum sensing, SLC, soft fusion rule

I. Introduction

MITOLA [1] is the first one to conceive the no-
tion of Cognitive Radio (CR) face to the spec-

trum scarcity problem, highlighted in research by the
Federal Communications Commission (FCC) [2]. Cur-
rently, spectrum bands are the vertebral column of wire-
less networks. In Cognitive Radio Networks (CRNs),
Spectrum Sensing (SS) is a crucial process of a cognitive
radio system [3]. By definition, SS is the amount of ra-
dio frequency energy on the spectrum and for which sev-
eral techniques have emerged. Energy Detection (ED) is
an example of techniques that are part of the literature
[4, 5]. In case the transmission signals of the Primary
User (PU) or the licensed user are known, the spectrum
detection is done through a matched filter. It is known to
be the best approach to detect licensed users [6]. More-
over, cyclostationarity feature detection is a technique
for recognizing PU transmissions by taking advantage of
the cyclostationarity properties of the received signals
[7].

When the PU signal is unknown, the ED is the most
commonly employed detector. This detector calculates
the received energy in the desired band and compares

it to a threshold based on the estimated noise power
level and the required false alarm probability. Due to its
implementation simplicity and low computing complex-
ity, ED is extensively utilized. Proper threshold regula-
tion in ED requires information about the noise power,
which is a disadvantage. This is especially important in
low Signal-to-Noise Ratio (SNR) settings, where a lack
of awareness regarding the noise level can result in sig-
nificant performance losses. Furthermore, the ED is un-
able to differentiate between interference and signal. The
challenging task in ED-based sensing consists in minimiz-
ing the SNR wall with some detection probability while
remaining resilient to noise power uncertainty [8]. The
energy detection is the adopted technique in this paper
for the spectrum sensing.

Cooperative Spectrum Sensing (CSS) is one proposed
solution in literature. It deals with individual spectrum
sensing issues caused by shadowing, fading and noise un-
certainty. Miss detection as well as false alarm could
be significantly reduced thanks to the cooperative sens-
ing. Furthermore, collaboration can tackle a hidden node
problem and reduce sensing time [9, 10]. In literature,
the CSS has been widely studied [11, 12, 13]. Indeed, [11]
and [14] provide a comprehensive assessment of much of
the previous research in this field, highlighting the major
gains and overheads of CSS.

Sharing information across cognitive radios and fus-
ing data from diverse measures is a difficult problem in
CSS. Mainly, there are two models of cooperation: dis-
tributed [15] and centralized [16]. Each cognitive device
can make soft or hard judgments [17]. In terms of the
risk of missing an opportunity, the reported results in
[17, 18] suggest that soft data combining surpasses hard
decision combination. However, when the number of col-
laborating users is big, hard decisions turn out to have
the same efficiency as soft decisions [19].

In the case of soft data fusion, these algorithms are
processed in the FC such as Square Law Combining
(SLC) [4], Maximum Ratio Combining (MRC) [20], Se-
lection Combining (SC) [21], Square Law Selection (SLS)
[4], and linear rules [17] to integrate the samples. Sim-
ilarly, the hard decisions combination performs meth-
ods like the AND-rule [22], the OR-rule[23] and the
MAJORITY-rule [24]. Quite recently, considerable at-
tention has been paid to apply machine learning methods
for cooperative spectrum sensing. Theoretically, they
give a better detection performance [25, 26, 27, 28] than
conventional schemes. In spite, they must be trained
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on enormous data sets, they have significant computa-
tional, memory, and processing power needs [29]. Cur-
rent researches on CSS are also focused on security is-
sues [30]. In the other words, researchers are motivated
to improve the cooperative detection performance in fu-
sion rules without neglecting the security issues such as
Spectrum Sensing Data Falsification (SSDF).

Fig.1 presents the main important gain from coop-
erative spectrum sensing, which is the improvement in
receiver sensitivity threshold as explained in [19]. The
reformulated data, once estimated, are merged (using
the merging rule). The overall decision is then estab-
lished and that the module plays a decisive role in the
scheme despite the ease of this act. The key contribution
of this paper is the introduction of a unique software data
scheme for CSS that makes use of the SNR average of all
CR users. Next sections of this paper serve its content
as follows. The CSS schemes as well as the ED method
are detailed in section 2 in order to present our model.
Section 3 describes the soft and hard merge schemes used
to validate our CSS system. In Section 4, the proposed
improved SLC is analyzed in depth. Then, Section 5 pro-
vides the results and analysis related to our simulation.
A small conclusion is finally provided in section 6.
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Fig. 1: Improvement in receiver sensitivity threshold in
CSS.

II. System model

Fig.2 Illustrates our adopted system model. For our
study, we favored the use of a centralized model. We find
it to be more realistic than the distributed model where
final decision making requires significant detection time.
Our CRN has one PU and a single centralized FC to
which the N unlicensed users (SU) are reporting their
local decisions or their statistic tests regarding PU spec-
trum activity. At each kth SU, ED based spectrum sens-
ing is performed. Local decision statistic Λk was derived
by kth SU. Each sensing period consists in collecting L
samples (L = 2u) which are selected according to the
time-bandwidth product u. The secondary user reports
a message Λk(1 ≤ k ≤ N) to FC through a reporting
channel which is assumed, in our paper, an error free
reporting channel (ideal).

The overall final decision about the PU spectrum ac-
tivity status is made on FC. As mentioned above, we
apply ED for individual spectrum sensing. We assume
that the kth CR threshold is λk, which is equal to λ.
The PU signal sensing issue could be modeled by a bi-
nary hypothesis test with null hypothesis H0 where the
PU signal is absent (white space) and alternative hy-
pothesis H1 where the PU signal is present. There are
two main stages to perform a reliable spectrum sensing.

SU1

SU2

SUN

Fig. 2: Centralized cooperative spectrum sensing model.

In the first stage, we apply a local spectrum sensing.
In the second one, we perform a cooperative spectrum
sensing schemes. The received signal energy spectra x(t)
is used by the ED detector and compared to a prede-
fined threshold level λ in estimating the presence or the
absence of the PU signal. ED presents a fundamental
limits in low SNR environment and can not estimate an
exact noise variance σ2

w. We can consider energy detec-
tion as a binary hypothesis testing scheme. As well, we
can formulate the received signal at kth SU, xk(t), by [5]:

xk(t) =

{
wk(t) : H0

hk(t)S(t) + wk(t) : H1
(1)

Where S(t) is the licensed user (PU) signal with an en-
ergy Es, wk(t) is the receiver noise at the kth secondary
user. The latter is regarded as being an independent
identically distributed (i.i.d) random process having zero
mean µw = 0 and variance σ2

w and hk(t) is a channel gain
between PU and kth SU. Due to the limited resources of
most CR users (e.g. energy and computing power), this
technique is the most used in SS. By taking the average
of the frequency intervals of a Fast Fourier Transform
(FFT), an energy detector and a spectrum analyzer can
be identically constructed. The received energy at the
kth SU, following the energy detection method, is pro-
vided by [31]:

Λk = Ek =

L∑
i=1

x2
k,i(t) (2)

In our analysis, we studied Additive White Gaussian
Noise (AWGN) as sensing channel. As well, the control
(reporting) channels are assumed to be ideal (error-free);
there is no erroneous error due to the reporting chan-
nel. Each SU conducts single sensing separately using L
samples of the received signal xk(t) at the k

th secondary
user. Once the single spectrum sensing is performed, the
results of the individual decision statistics Λk (local en-
ergies) as given in equation (2) are transmitted to the FC
through a common reporting channel, that is assumed to
have a large bandwidth to accomplish the assumption of
error-free reporting channel.

The test statistic Λk for the kth CR can be formulated
as central and non-central distributed random variables
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under H0 and H1 respectively, as [5]:

Λk ∼
{

χ2
2u, H0

χ2
2u(2γk), H1

(3)

Where ∼ means ”distributed as”, γk denotes the SNR
at the kth SU, and χ2

2u, χ2
2u(2γk) are respectively the

central and non-central chi-square distributions having,
both of them, a same Degree of Freedom (DoF) 2u (u =
L
2 ), with a non-central parameter 2γk. For the AWGN
sensing channel, we assume that the noise variance is
equal to one (σ2

w = 1). The Probability Density Function
(PDF) of Λk is provided by [4] as follows:

fΛk
(y) =

{
1

2u.Γ(u) .y
u−1.e−

y
2 , H0

1
2 .(

y
2γk

)
u−1
2 .e−

2γk+y

2 .Iu−1(
√
2γky), H1

(4)

Where Γ(a) represents the gamma function and Ii(a)
denotes the ith order modified Bessel function of the first
kind. Detection and false alarm probabilities, at the kth

cognitive radio, and for a non-fading Gaussian sensing
channel, are described in [4] as follows:

Pf,k = Pr{Λk > λ|H0} =
Γ(u, λ

2 )

Γ(u)
(5)

Pd,k = Pr{Λk > λ|H1} = Qu(
√

2γk,
√
λ) (6)

Where Γ(a, x) is the upper incomplete gamma function
so that Γ(a, x) =

∫∞
x

ta−1e−tdt, and Qu(a, x) denotes
the generalized Marcum Q-function given by 7

Qu(a, x) =
1

au−1

∫ ∞

x

tue−
a2+t2

2 Iu−1(at)dt (7)

In Rayleigh fading channels, the false alarm probability
does not depend on γ. Consequently, Pf is exactly the
same in the Gaussian channel, but the amplitude of gain
hk varies due to the fading. The average detection prob-
ability under Rayleigh channel P̄dRay can be formulated
as follows [4]:

P̄dRay = e
− λ

2σ2
w

u−2∑
k=0

( λ
2σ2

w
)k

k!
+

(2σ2
w + 2γ̄)u−1

2γ̄

×[e
− λ

2σ2
w+2γ̄ − e

− λ
2σ2

w

u−2∑
k=0

( λ2γ̄
2σ2

w(2σ2
w+2γ̄) )

k

k!
]

(8)

where γ̄ denotes the sensing channel average SNR under
Rayleigh fading. We develop the Gaussian approxima-
tions to the precise test statistic distributions, which are
valid only for large time-bandwidth products u.

The Central Limit Theorem (CLT) suggests that L
samples are i.i.d random variables with finite mean and
that, if L is large enough, the variance approximates a
normal distribution. Applying CLT, the test statistic
distribution, given in equation (2), and for a given suffi-
cient samples number L, can properly be approximated
using a normal distribution as follows:

Λ ∼ N (
L∑

i=1

[|x(i)|2],
L∑

i=1

[|x(i)|2]). (9)

The Λk distribution for a large number of L is given by:

Λk ∼
{

N (Lσ2
w, 2Lσ

4
w), H0

N (Lσ2
w(1 + γk), 2L(1 + γk)

2σ4
w), H1

(10)

Where N (µ, σ2
w) represents a Gaussian distribution

with µ as a mean and σ2
w as a variance. As a result, the

approximated false alarm probability (Pf,k,app) and the
approximated detection probability (Pd,k,app) for the k

th

SU are computed as follows [32]:

Pf,k,app = Q(
λ− Lσ2

w

σ2
w

√
2L

) (11)

Pd,k,app = Q(
λ− Lσ2

w(1 + γk)

σ2
w

√
2L(1 + γk)2

) (12)

From equation 11, the approximated threshold λk,app

for kth SU can be expressed as:

λk,app = σ2
w(Q

−1(Pf,k,app)
√
2L+ L) (13)

We assume that λk,app = λ and that Q(x) =
1√
2π

∫∞
x

e−
t2

2 dt is the Gaussian Q-function.

III. Soft and hard fusion schemes in the
cooperative system

In the subject of cooperative sensing, sharing data
among cognitive radios and combining different statistic
tests from various measurements is a challenging process.
The shared information can be soft or hard decisions
made by each secondary user [33].

CSS depends heavily on combining rules. To approx-
imate the final result, the FC obtains individual data
from various CRs and uses particular fusion strategies.
As a result, the detection performance depends largely
on the fusion rules to be used. In the literature, two
kinds of fusion data combination are most used; hard
decision combinations and soft data combination rules.

A. Hard rules
In this case, a local decision about the free frequency

bands of the PU signals (hole spaces) is made by each SU
separately. Then, an overall decision is made based on
the one-bit decisions that are reported to the fusion cen-
ter. Simplicity is the main advantage of this merge rule
scheme in which a limited reporting channel bandwidth
is sufficient. Making and reporting of binary decisions
to the fusion center through the free control channel is
followed by the use of three major mixing rules. Take
the individual statistics ∆k = 0, 1 as the hard decision
belonging to the kth secondary user. The value ”1” indi-
cates the occupation of the PU frequency band while the
”0” indicates the absence of licensed user signals, caus-
ing the inactivity of the PU frequency band. Collabora-
tive detection probability Qd as well as cooperative false
alarm probability Qf are respectively formulated in 15
and eq16. The spectrum availability decision is made in
each SU by reporting only one bit that is provided by
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∆k. This is done by making a comparison between the
test statistic Λk and the predefined threshold λ.

∆k =

{
1, Λk > λ
0, otherwise.

(14)

Qd = Pr {∆ = 1|H1} (15)

Qf = Pr {∆ = 1|H0} (16)

Where ∆ represents the fusion center’s final judgment,
which will be communicated back to SUs. There are
three hard decision combining schemes used in CSS as
follows:

A..1 OR-rule

In the case where a signal is detected by at least one
SU, the PU frequency band transmission/occupation is
decided through the OR rule, which uses the binary co-
operative hypothesis test in the following way:{

H1 :
∑N

k=1 ∆k ≥ 1
H0 : otherwise

(17)

Collaborative detection probability Qd,OR as well as col-
laborative false alarm probability Qf,OR, in the OR rule
case, are respectively computed by:

Qd,OR = 1−
N∏

k=1

(1− Pd,k) (18)

Qf,OR = 1−
N∏
i=k

(1− Pf,k) (19)

Where Pd,k et Pf,k are, respectively, detection and false
alarm probabilities for kth SU and N is the number of
collaborating SUs.

A..2 AND-rule

In the AND rule scheme, if the cognitive nodes report
the presence of a PU signal, this spectrum is then taken
into consideration. We can describe the cooperative bi-
nary hypothesis test of the AND rule as follows:{

H1 :
∑N

k=1 ∆k = N
H0 : otherwise

(20)

In the case of the AND-rule, cooperative detection and
cooperative false alarm probabilities are described by:

Qd,AND =

N∏
k=1

Pd,k (21)

Qf,AND =
N∏

k=1

Pf,k (22)

A..3 MAJORITY-rule

In case of signal detection by, at least, M users
(among the N users), with 1 ≤ M ≤ N , the
MAJORITY-rule or voting combination scheme deter-
mines the presence of the PU signals. The cooperative
binary hypothesis testing with the MAJORITY-rule is
given by: {

H1 :
∑N

k=1 ∆k ≥ M
H0 : otherwise

(23)

Indeed, if M = N
2 , then the MAJORITY rule can be

seen as a subset of the voting rule. This is also the case
for the AND and OR rules which are seen as special cases
if M = 1 and M = N . For the MAJORITY rule, we can
therefore redefine respectively cooperative identification
and false probability as follows:

Qd,MAJ =

{ ∑N
k=⌈N

2 ⌉
(
N
k

)
P k
d,k(1− Pd,k)

N−k, N is odd∑N
k=N

2

(
N
k

)
P k
d,k(1− Pd,k)

N−k, N is even
(24)

Qf,MAJ =

{ ∑N
k=⌈N

2 ⌉
(
N
k

)
P k
f,k(1− Pf,k)

N−k, N is odd∑N
k=N

2

(
N
k

)
P k
f,k(1− Pf,k)

N−k, N is even
(25)

B. Soft combining rules
The effectiveness of several soft data combining al-

gorithms at fusion center (such as: SC, SLC, SLS, and
MRC) is analyzed and discussed in this subsection. In
soft data combining rules, secondary users send all single
sensing findings Λk to the fusion center without making
any decisions. Then, the global decision is achieved by
combining N statistics at the FC, by applying a conve-
nient fusion rule (such as SC, SLS, SLC, and MRC). Soft
data combining performs better than hard data com-
bining. However, it requires a higher reporting channel
bandwidth. Hence, it provides more overheads than the
hard decision combination.

B..1 Square law selection

The Square Law Selection (SLS) technique works on
the idea that the FC chooses the maximum statistic test
[4]. Therefore, ΛSLS = max(Λ1,Λ2, ....,ΛN ). In case
of null hypothesis, and assuming that {Λk}Nk=1 are i.i.d
variables, so Qf for SLS scheme (Qf,SLS) can be eval-
uated using cumulative distribution function (CDF) of
ΛSLS given H0, FΛSLS

(Λ|H0), yielding:

Qf,SLS = 1− FΛSLSSLS
(Λ|H0)

= 1− Prob{max(Λ1,Λ2, ....,ΛN ) < λ|H0}
= 1− [1− Γ(u, λ/2)/Γ(u)]N .

(26)

Furthermore, Qd,SLS for SLS over AWGN channels may
be derived by conditioning on γk (under H1). Qd,SLS is
given in the following equation:

Qd,SLS = 1−
N∏

k=1

[1−Qu(
√
2γk,

√
λ)] (27)
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In other words, taking advantage of CLT approxima-
tions, Qd,app,SLS and Qf,app,SLS can be expressed as:

Qd,app,SLS = 1−
N∏

k=1

(1−Q(
λSLS − Lσ2

w(1 + γk)

σ2
w

√
2L(1 + γk)2

)) (28)

Qf,app,SLS = 1− (1−Q(
λSLS − Lσ2

w

σ2
w

√
2L

))N , (29)

For SLS, the detection approximated threshold is de-
scribed by:

λSLS = (Q−1(1− (1−Qf,app,SLS)
1
N )(σ2

w

√
2L) + Lσ2

w (30)

B..2 Square law combining

Besides the SLS, the SLC features an energy detec-
tion on each diversity branch that executes the square
and integrate operation. The test statistics sum L, as
presented in Fig.3a, is received by the energy detector.
A new decision statistic is produced through the combi-
nation of various SLC outputs belonging to N users:

ΛSLC =
N∑

k=1

Λk =
N∑

k=1

L∑
i=1

|xk(i)|2 (31)

Where Λk represents the kth secondary user test statistic
while xk is the received signal through the kth SU. Thus,
according to the H0 hypothesis, the test statistic ΛSLC

is following a central chi-square distribution with 2Nu
DoF, assuming that all N Gaussian channels are i.i.d
and that all the CRs are having a similar noise variance.

On the other hand, under theH1 alternative hypothe-
sis, the test statistic is considered non-central chi-square
distribution having a 2Nu DoF besides a non-central pa-
rameter γslc.

Where γslc =
∑N

k=1 γk, and γk is the SNR of the
kth secondary user. In this approach, the estimated test
statistic of each cognitive radio user is reported to the
FC where they will be added together. The summation
is compared to the predetermined threshold λ decision
statistic as in [4]:

ΛSLC ∼
{

χ2
2Nu, H0

χ2
2Nu(2γslc), H1

(32)

Using the SLC method, and with respect to non-fading
Gaussian channels, false alarm and detection cooperative
probabilities can respectively be calculated as follows:

Qf,SLC = Prob{ΛSLC > λ|H0} =
Γ(Nu, λ

2 )

Γ(Nu)
(33)

Qd,SLC = Prob{ΛSLC > λ|H1} = QNu(
√

2γslc,
√
λ) (34)

The FC employs the SLC diversity technique to calculate
the global test statistic ΛSLC . As the received signal
from SU takes a Gaussian distribution, the sum of N

Gaussian distributions (all weighted by ωk = 1, then

a
∑N

k=1 ωk = N), in the case of a value of L which is
large, can always follow a Gaussian distribution when
approximating it, i.e.:

ΛSLC,app ∼
{

N (LNσ2
w, 2lNσ4

w), H0

N (LNσ2
w(1 + γ), 2LN(1 + γ)2σ4

w), H1
(35)

Furthermore, the false alarm cooperative probability
Qf,app,SLC as well as the detection cooperative proba-
bility Qd,app,SLC can respectively be expressed by:

Qd,app,SLC = Q(
λSLC − LNσ2

w(1 + γ)

σ2
w

√
2LN(1 + γ)2

) (36)

Qf,app,SLC = Q(
λSLC − LNσ2

w

σ2
w

√
2LN

), (37)

Where σ2
w denotes the noise variance, γk represents the

SNR value of the kth SU and λSLC is the approximated
detection threshold for SLC, given as:

λSLC = σ2
w(Q

−1(Qf,app,SLC)
√
2LN + LN) (38)

The final decision is then reached by comparing the
global test statistic ΛSLC to the threshold λSLC .

B..3 Maximal ratio combining

The maximal ratio data fusion rule is a coherent com-
bining approach that requires channel state information
(CSI). As a result, the design complexity may increase.
Fig.3b outlines that SUs automatically amplify (weight-
ing by wk) and report the received samples of the PU
signals, rather than the energy, to the FC, where data
from different cognitive radios are summed in an MRC
combiner.

On the other side, each kth SU energy will be
weighted by wk, and the output of the MRC combiner
will be measured by an energy detector. Therefore, the
FC makes a statistical choice; ΛMRC which may be ex-
pressed as central and non-central chi-square distributed
random variables as:

ΛMRC ∼
{

χ2
2u, H0

χ2
2u(2γmrc), H1

(39)

Where γmrc =
∑N

k=1 wkγk, and wk = γk√∑N
i=1 γ2

i

. The

purpose of MRC scheme is based on computing the γmrc,
and we use the same mathematical developments from
equation (3) to equation (6) to get the cooperative proba-
bility of detection in 40. Finally, using the MRC system,
false alarm and detection cooperative probability, under
AWGN channel, is obtained by:

Qd,MRC = Qu(
√
2γmrc,

√
λ). (40)

Referring to false alarm cooperative probability, it is in-
dependent of SNR, so Qf,MRC is written:

Qf,MRC =
Γ(u, λ

2 )

Γ(u)
. (41)
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From MRC definition, the final test statistic of MRC can
be rewritten as follows:

ΛMRC =
N∑

k=1

wkΛk (42)

As CLT assumptions for large L, Λk follows a Gaussian
distribution. Therefore, ΛMRC is the weighted Gaus-
sian distributions sum and can always follow a Gaussian
distribution in approximation. As result, the approxi-
mated cooperative probabilities for both detection and
false alarm are:

Qd,app,MRC = Q(
λMRC − L

∑N
k=1 ωk(1 + γk)

σ2
w

√
2L

∑N
k=1 ω

2
k(1 + γk)2

) (43)

Qf,app,MRC = Q(
λMRC − L

∑N
k=1 ωkσ

2
w

σ2
w

√
2L

∑N
k=1 ω

2
k

), (44)

Where the approximated detection threshold for MRC is
given by:

λMRC = σ2
w(Q

−1(Qf,app,SLC)

√√√√2L
N∑

k=1

ω2
k) + L

N∑
k=1

ωk (45)

B..4 Selection combining

In the selection combining soft fusion rule, as shown
in Fig.3b, the FC uses a statistic test ΛSC which has the
highest SNR γsc, where γsc = max(γ1, γ2, ..., γN ) and
ΛSC = max(Λ1,Λ2, ...,ΛN ). Using the selection com-
bining approach, the false alarm cooperative probability
as well as detection probability, across a Gaussian chan-
nel, may be expessed by:

Qd,SC = Qu(
√
2γsc,

√
λ) (46)

Qf,SC =
Γ(u, λ

2 )

Γ(u)
(47)

We can clearly see that the approximated values of de-
tection and false alarm cooperative probabilities are re-
spectively provided by:

Qd,app,SC = Q(
λSC − Lσ2

w(1 + γ)

σ2
w

√
2L(1 + γ)2

) (48)

Qf,app,SC = Q(
λSC − Lσ2

w

σ2
w

√
2L

) (49)

Where the approximated threshold of SC λSC is given
as:

λSC = (Q−1(Qf,app,SC)
√
2Lσ2

w) + Lσw (50)

SLS

SLC

For both SLS

and SLC

Energy Detector

E1

E2

E3

EN

(a) SLS or SLC fusion rule
model.

(b) MRC or SC fusion rule
model.

Fig. 3: The soft data combining rules structure.

IV. Proposed scheme for SLC

Soft fusion approaches outperform hard fusion meth-
ods in terms of detection. However, and contrary to hard
fusion [22], transmitting local test statistics to FC in the
soft fusion approach requires more control channel band-
width. This overhead can be forwarded by minimizing
the calculation process in the soft fusion technologies.
MRC has a great detection performance, but the SLC ap-
proach is simple to implement, has a low complexity and
do not require channel state information (CSI). Hence,
we are motivated to develop SLC schemes to reach the
performance of MRC method with minimum computing
complexity. Thus, an improved SLC approach is pro-
vided in this paper.

The average SNR γavg, of all secondary users, is com-
puted. In our proposed scheme, users energies (test
statistics) with high SNR than the γavg are collected and
aggregated for the final decision. When compared to the
traditional SLC, this approach offers a higher detection
probability, especially in a low SNR environment and a
larger CRs number in the CSS. As a benefit other than
increasing detection probability, the number of submit-
ted results to the FC is reduced with no impact on de-
tection performance. Consequently, there can be energy
savings. The SNR average is calculated as follows:

γavg =
1

N

N∑
k=1

γk (51)

FC will take into account just M energies having SNR
higher than average γavg. Therefore, our algorithm
will combine just M test statistics, with M is less than
N . The final test statistic of the first enhanced scheme
ΛENH1,SLC is defined at the FC. In which, the received
local test statistics are combined then compared to the
global threshold value λENH1,SLC in order to detect the
spectrum activity of the PU, as in Eq53:

ΛENH1,SLC =
M∑
j=1

Λj (52)

λENH1,SLC = σ2
w(Q

−1(Qf,Enh1,SLC)
√
2LM + LM) (53)

Their ultimate probabilities are respectively given by:

Qd,ENH1,SLC = Q(
λSLC − LMσ2

w(1 + γ)

σ2
w

√
2LM(1 + γ)2

) (54)

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2023.17.18 Volume 17, 2023

E-ISSN: 1998-4464 158



Qf,ENH1,SLC = Q(
λENH1,SLC − LMσ2

w

σ2
w

√
2LM

), (55)

Our first proposal regarding enhanced SLC scheme is
formulated via Algorithm. 1. It aims to perform data
soft fusion.

Algorithm 1 First proposed enhanced SLC soft fusion
scheme
1: Declare the parameters L,N
2: Determine the value of Λ
3: Compute the average SNR value γavg
4: Fix the desired value of Qf

5: Initialize k (k represents the index of a single SU)
6: Conclude the individual test statistics (Λk) for kth

SU
7: if γk of kth SU ≥ γavg then
8: Report Λk to FC
9: else

10: end if
11: Calculate M and λENH1,SLC

12: Calculate final test statistics ΛENH1,SLC Compare
the ΛENH1,SLC with the final λENH1,SLC

13: if ΛENH1,SLC ≥ λENH1,SLC then, set detection
true

14: end if
15: Estimate the cooperative detection probability and

move to step 4

A second improved soft data fusion scheme is simi-
lar to first one, but we will weight the M collected test
statistics by θj , where :

θj =
γj√∑M
j=1 γ

2
j

(56)

Similarly, the detection and false alarm cooperative
probabilities for the second enhanced SLC scheme can
be given as:

Qd,ENH2,SLC = Q(
λENH2,SLC − L

∑M
j=1 θj(1 + γj)

σ2
w

√
2L

∑M
j=1 θ

2
j (1 + γj)2

) (57)

Qf,ENH2,SLC = Q(
λENH2,SLC − L

∑M
j=1 θjσ

2
w

σ2
w

√
2L

∑M
j=1 θ

2
j

), (58)

Where the approximated detection threshold for the sec-
ond enhanced SLC scheme is given as:

λENH2,SLC = σ2
w(Q

−1(Qf,app,SLC)√√√√2L
M∑
j=1

θ2j ) + L
M∑
j=1

θj
(59)

V. Numerical and simulation results

We present in this section the simulation results as
well as the analyzes related to our framework. The re-

ceiver operating characteristic curves (ROC) or comple-
mentary ROC (CROC) are compared in the different sit-
uations provided in the previous sections in order to val-
idate our model. In the first part, we present and discuss
our results for different types of soft and hard data com-
bined under a Gaussian channel. In the second part,
we present the detection performance of the proposed
schemes. It should be noted that each of the following
diagrams includes both analysis and simulation results.
These results are respectively described through by lines
and discrete marks. The primary user signals were mod-
eled as deterministic signals such as BPSK signals, and
the noise w(t) is assumed to be AWGN, so σ2

w = 1 and
µw = 0. In Fig.4, the CROC curves (Qf versus Qm) are
drawn for different soft and hard data fusion schemes.
It is seen from Fig.4 that the individual cooperation suf-
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Fig. 4: CROC curves for Hard and Soft fusion rules with
γ̄ = 0dB, N = 3 and L = 10

fers both under Gaussian channel and Rayleigh channel
when compared to cooperative sensing. It can also be
seen that the MRC scheme significantly outperforms all
other soft and hard schemes. As mentioned earlier [22],
the OR rule outperforms all hard data combinations. In
addition, from our findings, the OR rule surpasses SC,
and has an identical detection performance with SLS un-
der AWGN channel. One of the great advantages of the
SLC method is that it does not require channel state in-
formation, and further improves the cooperative detec-
tion performance. This fact motivated us to develop the
SLC scheme in a critical environment for low SNRs. The
exact and the approximate detection probabilities for de-
terministic and random primary signal models were ex-
amined in [34]. It was shown that they converge for low
SNR but significantly diverge for high SNR. Another ar-
gument to analyze our approaches in case of low SNR [35]
is to get our finding more practical in real scenarios [36].
In Fig.5, the detection performance of the two enhanced
SLC methods is compared with that of conventional soft
fusion methods such as SLC and MRC. Compared to a
traditional SLC, the proposed schemes have better detec-
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tion performance. Whereas, for the conventional MRC,
the proposed schemes share slightly equal performance
with, as shown in the enlarged figure. Analysis and simu-
lation indicate that our results describe for the first time
a slightly identical improvement in detection between the
proposed method and MRC. Furthermore, they have low
computational processing, and power consumption than
MRC scheme. The effect of γ̄ on cooperative detection
probability is shown in Fig.6. It is observed that as γ̄ in-
creases, Qd increases significantly. It can be noted that
MRC scheme is superior over all Soft combining schemes.
Clearly the proposed rules have a better performance
than SLS, especially the second enhanced method that
is competitive to MRC technique.
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Fig. 5: Comparison of cooperative detection perfor-
mance of Enhanced SLC with conventional SLC and
MRC for N = 20, γ̄ = −20 and L = 1000.
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VI. Conclusion

To improve the performance of the SLC method, an
enhanced SLC method for soft fusion is proposed and
simulated. In fact, the proposed methods have been
found to outperform the conventional SLC method and
are slightly identical to MRC with less computational
complexity. Simulations results reveal that CSS with
the OR rule is the best hard combination for high co-
operative probability of false alarm. Conversely, for the
low probability of false alarm, the MAJORITY rules is
the best. SLC and MRC rules have been confirmed to
have better detection probabilities than SLS, SC, and all
hardware data combinations. The proposed method can
be readily used in practice. Therefore, future work will
involve the application of the proposed fusion scheme in a
realistic scenario using software defined radio platforms,
and studying the case of channel fading with erroneous
reporting channel.
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