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Abstract: - In this paper, a surjective morphism 

of the topological groups from the real line R  to 

the  p -curve Cp  is introduced, this function 

maps from the real line to the p -curve on the 

complex and when 2p   then coincide with a 

classical exponent.  The properties of  p -Fourier 

transform is studied. The generalization of the 

Weyl functional calculus is considered.   
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I. INTRODUCTION 
 
The paramount example of a linear 

isomorphism from one Hilbert space 
 ,H L R dx 2  to another Hilbert space  

 ˆ ,H L R d 2  is the Fourier transform, which 
transforms a complex function   into a 
different complex function ̂ . If we assume 
that     is a real function of the real argument 
then we can define a family of operators 

   exp 2 it    , that operator family 
constitutes a unitary group. The possibility of 
this construction is rendered by the 
exponentiation identity for the Fourier operator.  

The importance of the Fourier 
transformation is due to its wide applications in 
modern physics, especially, which utilize 
quantum approaches to the description of 
natural processes, and information science, it is 
a fundamental tool of signal processing.      

In the present paper, we make an 
attempt to generalize the theory of the Fourier 
functional calculus by introducing the pair of 
circular functions  pcs   and  psn  , and 
extending the definitions of the Weyl theory.  

A curved line given by the equation 
1p p

x y   on  2R -plane is called a p -curve 
and denoted by Cp . Let us denote the length of 
p -curve by 

pl . We introduce a pair of C1 -

smooth functions  pcs   and  psn   of the 

real argument 0, pl     defined as  
 
  for allpcs x R                      (1) 

and  
  for allpsn y R   ,                  (2) 

where coordinates  x  and y  belongs to p -
curve,  i.e. bound by the equation 1p p

x y  , 
so that   

 0 0
4
pl

psn pcs
 

  
 

 and 

 0 1
4
pl

pcs psn
 

  
 

, and 

    1 for all
p p

psn pcs R     . (3) 
 

These functions satisfy the integral identity   
   

      p p

psn pcs

pcs psn d

 

  



 
.           (4) 
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II. p -FOURIER TRANSFORM 

Assume 0,p

pf L l     and let us write a 
Fourier-type series with appropriate weights on 
the interval 0, pl    as  

 

    
, ,...

,m m

m

f x a

a pcs mx b psn mx


 

 

0

1 2

          (5) 

with some real coefficients 
, , ,..., , ,...m ma a b a b0 1 1   

By usual means. integrating the identity 
(3) over the period 

pl , we obtain  

   
2

p pl l
p p pl

pcs d psn d     
0 0

           (6)             

and 

 
1 pl

p

a f x dx
l

 0

0

.                       (7) 

Next, we have  

     
2 pl

p

m

p

a f x pcs mx pcs mx dx
l



 
2

0

      (8) 

and 

     
2 pl

p

m

p

b f x psn mx psn mx dx
l



 
2

0

.    (9) 

Thus, we obtain the mapping of the 
functions 0,p

pf L l      in the set of the 
infinite series according to the formula  

   

       

       

1

2 .

p

p

l

p

p
l

p
m p

f x f y dy
l

f y pcs my pcs my pcs mx dy

lf y psn my psn my psn mx





 

 
 
  





0

2

2
0

                            (10) 
 

Statement (analogous Riemannian 

theorem) 1.  Assuming g  is an integrable 
function over an arbitrary interval  ,a b R  
then  

     lim 0
b

p

m
a

g x psn mx psn mx dx





2

   (11) 

and  

     lim 0
b

p

m
a

g x pcs mx pcs mx dx





2

.  (12) 

Theorem (adjoint) 2.  Let  g  be an 
integrable function over an arbitrary interval 
 ,a b R  then there are  

   lim 0
b

m
a

g x psn mx dx


               (13) 

and  

   lim 0
b

m
a

g x pcs mx dx


 .              (14) 

Adjoint series 

Assume pf L   then 
p

p pf f L
 

2 1  and 
we can write 

   

   

   , ,...

,

p

p

m

p
m

m

f x f x

a pcs mx pcs mx
a

b psn mx psn mx










 
  
  



2

2

0 2
1 2

%
%

%

(15) 

where , , ,..., , ,...m ma a b a b
0 1 1

% %% % %  defined as follows   

   
1 pl

p

p

a f x f x dx
l



 
2

0

0

% ,                 (16) 

     
2 pl

p

m

p

a f x f x pcs mx dx
l



 
2

0

%    (17) 

and                   

     
2 pl

p

m

p

b f x f x psn mx dx
l



 
2

0

% .         (18) 

 
III. THE MORPHISM FROM THE REAL LINE 

TO THE COMPLEX PLANE :Epp R Cp  

 
We introduce a function :Epp R Cp , 

which maps from the real line to the  p -curve 
on the complex plane as follows  

 
     ,Epp i pcs i psn R       (19) 

and dual function  
 

     , ,Epq i pcs i psn R p q       ,                             
(20) 
assume that p  is renaming q .  The function 

:Epp R Cp  is a surjective morphism of the 
topological groups from the real line R  to the  
p -curve Cp  and covering the space of the p -

curve Cp . In case 2p  , the function Epp  is a 
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classical exponent on the complex plane of the 
imaginary argument. 

 
From formula (19), we have   

      
1 ,
2

pcs Epp i Epp i R        

and  

      
1 ,
2

psn Epp i Epp i R
i

       . 

We introduce an integral transformation 
Tp  of a function  p qf L L  in the form  

        ˆp

pf Epp l i x f x dx Tp f  




                                       

(21) 
 

where 
pl  is a length of the p -curve Cp . 
This integral transformation Tp  is a 

linear mapping relative to the function f  and in 
case 2p   coincides with the Fourier 
transformation. 

 
If 2p   then the integral transformation 

of function g  
 

      pEpp l i x g d Rp g x  




    (22) 

 
coincides with the inverse Fourier transform, in 
the general case it is not necessarily true since 
the dual structure does not coincide with the 
natural complex structure, the inverse transform 
is not always given by formula (22).   

We define the inverses integral 
transformation Tp1  of a function   ˆp f   as  

    ˆpf x Tp f x 1                            (23) 

 
for all transforms  ˆp f  . 

So, we introduce two types of mappings: 
first is an analog of the Fourier transform  Tp  
and its inverse Tp1 , second is an analog of the 
inverse Fourier transform Rp  and we can easily 
define its inverse Rp1 .  These morphisms do 
not have the structure of the group except for 

2.p    

 
IV. GENERALIZATION OF THE WIGNER 

FUNCTION 
Let functions  p nL R   and 

 q nL R  then we introduce a general Wigner 

function   , ,W x p    as any quasi-

probability distribution, which satisfies the 

following conditions: 

1.         , ,
nR

W x p dp x x     ; 

2.         , , .
nR

W x p dx Tp p Tp p      

As a consequence of the first 
condition, we have   
      , ,

n
x

R

W x p dpdx x x    
2

. 

For a pair of functions  p nL R   and 

 q nL R  such that | 0   , we define a 

density   in the point  ,x p  by  

   
  

, ,

, ,
, ,

|
W x p

x p x p


   

 
 

 
  . 

The probability density function is a 
homogeneous function of degree one so that 

   , ,, ,x p x p      for all complex 
0  .  

Let us introduce the generalization of 
the Weyl quantization by  
       ,

n

p

R

Epp l i x x dx       , 

where   is a symplectic form. 
We define an operator  

       , , ,pV Epp l i x Q P    , 

where Q  is position operators and P  is a 
momentum. 

The Weyl quantization   Dp    is 
defined by  

 
         Dp V         

for any test function  .  
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We estimate   
p

Dp      . 

Similarly, to the classical case, the new Weyl 
quantization is a linear mapping so that  

 
     Dp Dp Dp         

holds for all complex numbers ,  . 
Definition. The Schwartz space is a 

space of all functions such that   

 
 

   

 

: sup
.

, 0

n

n

n a

x
x R

n

S R

C R x x

a N

 









    
 

  
   

 

Now, let us consider a case when 
Epp Exp . The exponent function satisfies the 
characteristic identity 

     Exp a b Exp a Exp b   so the Weyl 
product has the property   

     #Dp Dp Dp     
for some function ,  . The symbol #  denotes 
a non-commutative product (often called Weyl 
product) so that      #Dp Dp Dp      
for some functions. 

Let us assume  AK  and BK  are kernels 
for the integral operators A  and B  
respectively. So, we have   

 
   

  

     

    

   

exp 2

1 ,
2

exp 2
,1 1,

2 2

n

n

n

R A

n

R A

Dp Dp A x

i z x p

dpdz
W K x z p z

i z x y p z

dpdzdy
K z x y z x y





 

 

 



 

  
 

   
  

  

    
 

   
     

  





2

3

1

 
we take  Dp A   then  Dp A  1  and 
calculate  

  , ,
2 2

n

AK x z x z F x z
 

   
   

 

1 , 

thus  
     , , .Dp Dp x p x p  1  

Generally speaking, the product 
 n n

A BK K S R R   does not commute. So, 
we obtain the following lemma. 

 
Lemma 1. Let AK  be a kernel of an 

operator     ,n nA BL L R L R 2 2 . Then the 

mapping Dp1  is an inverse to Weyl 

quantization so that  n

ADp A W K 1
  and 

  n

AA Dp W K ; the Weyl kernel is given 

by  

 

    

  

1exp 2 ,
2

1 , ,
2

nR

n

K i z x p x z p dp

z x
F x z

   

 


 
     

 

   
   

  



 

then  
   

     

,

, ,n

Dp Dp x p

W K x p x p



 

 

 

1

 holds for 

 nL R  2 . 

Lemma 2. Let AK  and BK  be integral 

kernels of the operators A  and B  respectively.  

Then the product 

      , , ,A B A BK K x z K x K z    is 

correctly defined and is a kernel of the 

operator; in other words 

     : n n n n n nS R R S R R S R R      . 

Proof. Let us denote the multi-indices 
by , , , na b N  

0
 then we estimate 

  

   

   

   

   

   

   

,

, ,

, ,

, ,

1sup , ,

2max sup , ,

1 , ,

n

n

a b

x z A B

a b

x z A B

a b

x z A B

a b

x z A B L

a b

x z A B
R

a b

x z A B
c n

R

a b

x z A B

x z K K x z

x z K x K z

x z K x K z

x z K x K z

Const x z K x K z

Const x z K x K z

Const x z K x K z

Const

 

 

 

 

 

 

 






  

     

     

     

     

     

     



1

2

00

   2max , , .a b

x z A B cc n
x z K x K z 


   

02
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Next, we exchange the order of the 
supremum and integration and obtain   

 
   

   

   

,

,

,

sup , ,

sup , ,

sup , ,

n

n

n

a b

x z A B
x z R

a b

x z A B
x z R

a b

x z A B
x z R L

x z K x K z

x z K x K z

x z K x K z

 

 

 







    

     

    
1

 

so, we have   

   

   

   

,

,

,

sup , ,

1 sup sup , ,

2max sup sup , , ,

n

n n

n n

a b

x z A B
x z R L

a b

x z A B
x z R R

a b

x z A B
c n

x z R R

x z K x K z

C x z K x K z

C x z K x K z

 

 

 



 


 

    

     

      

1

2

 
thus, we obtain   n n

A BK K S R R  . 
 
For the Weyl system, we can formulate 

the following Weyl quantization theorem. 
 
Theorem.  Let functions 

 , nS R  2  then the function 

 # nS R  2  and such that satisfies the 

equality  

     #Dp Dp Dp    , 

where   

  

     

    

    
   

        

   

, ,

# ,

exp 2 , , ,

exp 2 , , ,
2
, ,

4 , , , , ,
exp

, ,

z
z

x p

i x p z z

i
z z

F z F z

i x p z x p z

z z

 




 

   


   

   

   



   



 

 
 

 

  
 
 
 

%%

%%

%%

%%

%%

%%

 

 
Proof. Assume  , nS R  2  and 

employ the definition of Dp , we have   

 
    

    

   
   

      

        

 

, ,

, ,

, ,

2exp 2 , , , ,

, , , .

,

z
z

Dp Dp

F z F z

W z W z

i
z z z

F z F z z

W z

 




 

 

   

 

    


    






 

 
   
 

 

%%

%%

%%

%%

%%

%%

 
Now, we are going to establish that  
 # nS R  2  

  

    

      
 

 

     

    

    
   

      

    

    

,

, ,

# ,

2exp 2 , , ,
,

, ,

exp 2 , , ,

exp 2 , , ,
2
, ,

2exp 2 , , , ,

2exp 2 , , ,

, ,

z

z
z

x p

i
z z

F x p

F z F z

i x p z

i
z z

F z F z

i
x p z z

i
z z

F z F z



 


 




 

 

   


   

  


   

   

   


   


   



  
  

   
 

 
 

 
   

 

 
 

 

 
  

 

%%

%%

%%

%%

%%

%%

 
so #   belongs  nS R2 . 

Let us denote K  and K  kernels, 

which belong to  nS R2 , then we have    

     

    

      

,

, # .

z

z

Dp Dp x

K K x

K K z z Dp x

 

 

  



  



    

  

 

Next, using the properties of the 
exponential function, we have   
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# ,

exp 2 , , , ,

exp 2 , , ,
2

exp 2 , , ,
2

exp 2 , , ,
2

, ,

nR

x p

i x p z y

i
z y

i
z z

i
y y

z y dzd dyd dzd dyd

 

   


   


   


   

       



  

 
 

 

 
 

 

 
 

 




8

%%

%%

% % % %% %% %

 

       

     

exp 2 , , , ,

, , , .
2

nR

i z z x p

z x p z dzd dzd

   


     

  

 
 

 


4

%%

% %% %

 

By changing variables 

     , , , ,
2

y x p z


    we are completing 

the proof of the theorem. 
From semigroup properties of 

exponential function follows: let a  be a symbol 
of  2nS R   then the Weyl operator is given by 

 

 

   
 ,

ˆ

1 ,
21 ,

2
exp

n

z p

A x

a x z p

i
p x z z










 
  

  
 

  
  

 

 

the kernel of the Weyl operator A  is    

 
 

 
ˆ

exp
1,

2 1 ,
2

n

A

p

i
p x y

K x y

a x y p





 
   

   
  
   

 
 

, 

and the symbol is written as     

 

ˆ

,

1 1exp , .
2 2A

z

a x p

i
p z K x z x z





   
     

  

 

These formulae are circular via the semigroup 

properties.   

Lemma 3. Assume functions 

 , , nS R   , then we have equality  

          , , ,Dp W         1
. 

The proof follows straightforward from 

properties of the exponential function.  

 
V. GENERALIZATION OF THE WEYL 
CALCULUS WITH Epp  MORPHISM 

Let X  be a reflexive separable Banach 

space and  ,B X X  be a space of bounded 

operators of on X . The quantization function is 

a morphism   ,n nR R B X X  , which maps  

phase space n nR R  to the space of bounded 

operators  ,B X X  on the reflexive separable  

Banach space X .  

The Weyl system is defined as  

         , , , ,pW x p Epp l i x p Q P Id X  

 

for all points of phase space  ,x p . 

For any function  , we define the Weyl 

quantization by  

      Dp V      

and the Weyl product #   as  

  

       
     

     

# ,

, , , ,

, , .

, , ,

p

p

x p

Epp l i x p y q z s

F y q F z s

Epp l i y q z s

 

 



 

 



 


 

The important tool of quantum physics 

is an asymptotic expansion of the Weyl product, 

which is defined as   
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     # , ,i O          2 , 

when the Banach space X  can be equipped 

with its natural scalar product then the bracket 

 ,   is Poisson brackets with the factor two; 

the bracket  ,   is defined pointwise product 

      , , , ,x p x p x p     . 
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