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Abstract: - In this paper, a surjective morphism
of the topological groups from the real line R to
the p-curve Cp is introduced, this function

maps from the real line to the p-curve on the
complex and when p=2 then coincide with a
classical exponent. The properties of p -Fourier

transform is studied. The generalization of the
Weyl functional calculus is considered.
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I. INTRODUCTION

The paramount example of a linear
isomorphism  from one Hilbert space

H=L°(R,dx) to another Hilbert space
H =2 (R, d/”t) is the Fourier transform, which
transforms a complex function w into a
different complex function y . If we assume
that¢(A) is a real function of the real argument
then we can define a family of operators
exp(—2ﬂit¢(l))(l), that operator family

constitutes a unitary group. The possibility of

this construction is rendered by the
exponentiation identity for the Fourier operator.
The importance of the Fourier

transformation is due to its wide applications in
modern physics, especially, which utilize
quantum approaches to the description of
natural processes, and information science, it is
a fundamental tool of signal processing.
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In the present paper, we make an
attempt to generalize the theory of the Fourier
functional calculus by introducing the pair of

circular functions pCS(H) and psn(@), and

extending the definitions of the Weyl theory.
A curved line given by the equation

x| +|y|” =1 on R?-plane is called a p -curve
and denoted by Cp. Let us denote the length of
p-curve by I,. We introduce a pair of (o

smooth functions pCS(H) and psn(e) of the
real argument @ e [0, Ip] defined as

pes(@)=x for all HeR (1)

and
psn(@):y for all OeR,

where coordinates X and y belongs to p -

2

curve, i.e. bound by the equation |x|” +|y|* =1,
so that

|
psn(0) = pcs[ZpJ:O and
|
pcs(0) = psn[z"le, and
|psn(0)|" +|pes(0)” =1 for all @eR.(3)

These functions satisfy the integral identity
psn (&) pcs(6) =

= [((pes(0))" ~(psn(0))" )do’ Y



INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

DOI: 10.46300/9106.2022.16.112

II. p-FOURIER TRANSFORM
Assume f eLP [O, Ip] and let us write a

Fourier-type series with appropriate weights on
the interval [O, Ip] as

f(x)=a,+
+ > (a,pcs(mx)+b, psn(mx)), (5)
m=1,2,...
with some real coefficients
ag,ay,0;,....8,, by,
By usual means. integrating the identity
(3) over the period 1, we obtain
Ip Ip |
[Ipes(0)" do = [|psn(0)" do=> (6)
0 0
and
Ip
a, :ij f (x)dx (7)
I, 9
Next we have
=—_[ ) pes (mx)| pes (mx)|” “dx o (8)
and
- —I ) psn(mx)| psn (mx)|” “dx. (9)

Thus, we obtain the mapping of the
functions f eLP [O,IP] in the set of the

infinite series according to the formula
|
1 p
f(x) :I—j f(y)dy+
po

(1 (y) pes(my)| pes(my)
mol+f (y) psn(my)|p3n(my)|
(10)

Statement
theorem) 1.

(analogous Riemannian
Assuming ¢ is an integrable

function over an arbitrary interval [a,b]cR
then

b
lim [ g (
and

limig(

m—oo

X) psn (mx)| psn(mx)\p*2 dx=0 (11)

X) pes (mx))| pcs(mx)\p_2 dx=0. (12)
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Theorem (adjoint) 2. Let g be an
integrable function over an arbitrary interval
[a,b] =R then there are

ﬂr}ojg psn mx dx 0 (13)
and
rlﬂggjg pes(mx)dx=0. (14)
Adjoint series
Assume f eL” then f|f | ﬁ and

we can write
FOIf ()" =
8 pes (mx)| pes (mx)[" + | (19)
s [HPlpes(mf” )
-\ +B0psn (mx)| psn (mx)|

go,...

bl 1

where &), a@,ﬁﬁ...,a@

! f(

zjf xp
I, o

defined as follows

dx,

(16)

°

pes(mx)dx  (17)

and

2" :

—If x p psn(mx)dx.
0

I (18)

o

11I. THE MORPHISM FROM THE REAL LINE
TO THE COMPLEX PLANE Epp: R —Cp

We introduce a function Epp:R —Cp,
which maps from the real line to the
on the complex plane as follows

p -curve

Epp (i8)=pcs(&)+ipsn(8), <R (19)
and dual function

Epq(i0)=
(20)
assume that p is renaming (.

pcs(6)+ipsn(8), OeR, p=q,
The function
Epp:R—>Cp is a surjective morphism of the

topological groups from the real line R to the
p -curve Cp and covering the space of the p -

curve Cp. In case p =2, the function Epp is a
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classical exponent on the complex plane of the
imaginary argument.

From formula (19), we have
pcs(0) :%(Epp (i0)+Epp(-i6)), 6<R
and
psn(@):%(Epp (i6)-Epp(-id)), 6<R.

We introduce an integral transformation
Tp of a function f e L’ L" in the form

pf(l): T Epp(—lpil-x) f(x)dx=Tp(f)(4)
ey

where | is a length of the p -curve Cp.

This integral transformation Tp is a
linear mapping relative to the function f and in
case p=2 with  the
transformation.

coincides Fourier

If p=2 then the integral transformation
of function ¢

T Epp(1,i2-x)g(4)dA=Rp(g)(x) (22)

coincides with the inverse Fourier transform, in
the general case it is not necessarily true since
the dual structure does not coincide with the
natural complex structure, the inverse transform
is not always given by formula (22).
We define the inverses

transformation Tp™ of a function ° f (ﬂ) as

F()=Tp*(")(x) (23)

integral

for all transforms P f (/1) )

So, we introduce two types of mappings:
first is an analog of the Fourier transform Tp

and its inverse Tp~, second is an analog of the
inverse Fourier transform Rp and we can easily

define its inverse Rp™'. These morphisms do

not have the structure of the group except for
p=2.
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IV. GENERALIZATION OF THE WIGNER
FUNCTION

Let functions yel® (R") and

pel? (R”) then we introduce a general Wigner
W, (v, 2)(x. p)

probability distribution, which satisfies the

function as any quasi-

following conditions:
Lo W, (v, 0)(x p)dp=p (x)&(%):
Rn

2. [W, (v, @)(x P)ax=To (v (p))Tp(#(p)):

As a consequence of the
condition, we have

W, (v 0)(x, p)doax=(y ()3 (x)),

X
RZn

first

For a pair of functions y e L? (R”) and
Qe Lq(R”) such that <l//|§0>¢0, we define a
density p in the point (X, p) by

W, (v 9)(x. p)

(Vo)
The probability density function is a
homogeneous function of degree one so that

p/lr//,irp(x’ p):pu/,w(x’ p) all
A#0.

Let us introduce the generalization of
the Weyl quantization by

(S)(2) = [ Epp(1,i o (2 x))w (x)ax.

where o is a symplectic form.
We define an operator

V (4)=Epp(-,i o((2.x).(Q.P))),
where Q 1is position operators and P is a
momentum.
The Weyl quantization Dp(y/)(¢) is
defined by

Dp(w)(¢)={(Sw)(V ()¢()

for any test function ¢ .

pl/mﬂ(x’ p):pu/,f/)(x’ p):

for complex
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We estimate [Dp(y)(9)] <[3,v,lo]-

Similarly, to the classical case, the new Weyl
quantization is a linear mapping so that

Dp(ay + fp)=aDp(y)+ BDp(¢)

holds for all complex numbers «, £ .

Definition. The Schwartz space is a
space of all functions such that

S(R")=
l//ECOO(Rn)
B ‘v’a,aeN”U{O}

Now, let us consider a case when
Epp = Exp. The exponent function satisfies the

identity
Weyl

sup

xeR"

x*o5y ( X)‘ < oo}

characteristic
Exp(a+b)=Exp(a)Exp(b)
product has the property

Dp (v #¢)=Dp(y)Dp(¢)
for some function /, ¢. The symbol # denotes
a non-commutative product (often called Weyl
product) so that Dp(w#¢)=Dp(y)-Dp(p)
for some functions.

so the

Let us assume K, and K; are kernels
for the integral operators A and B
respectively. So, we have
Dp(Dp™ (A)¢)(x)=
exp(—2ﬂi (z-x) p)gn
= dpdz =

vv,,(KA)G(XH,gp)jqﬁ(z)
nj exp(—27i(z—x+Y)p)#(z)x

dpdzdy,
o K,{%(z+x+y),%(z+x—y)j Paeey

we take Dp(t//):A then l//=Dp_1(A) and
calculate
£ £ o
KA(X-FEZ,X—EZJ:&‘ (F 11//)(X,Z),

thus
Dp~* (Dp(v))(x. P)=w(x. p).
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the
K, K; e S(R" X R”) does not commute. So,

Generally  speaking, product

we obtain the following lemma.

Lemma 1. Let K, be a kernel of an
operator Ae BL(LZ(R”),LZ(R")). Then the
mapping Dp™ is an inverse to Weyl
quantization so that Dp™*A=¢"W(K,) and
A=Dp(£"W (K,)); the Weyl kernel is given

szj
.

exp(—27i(z—x) p)w(%(x+ Z’gp)jdp -

oo DP(BR)(x )=

=g" (W(KV/))(X, p)=w (X, p)
wel?(R").
Lemma 2. Let K, and K, be integral

kernels of the operators A and B respectively.
Then the product

(KK ) (% 2) =(K, (%) Kg (- 2)) is
correctly defined and is a kernel of the
operator; in other words

*:S(R"xR")xS(R"xR") > S(R"xR").
Proof. Let us denote the multi-indices
by a,a,b, # €N, then we estimate

x*2°0707 (K Kz ) (X, z)‘:

=1x*2°050% (K, (%, -) Ky (-, z)>‘
< < x*2°07 07K, (%, ) K (- Z)D =
=|x*z"0¢07 K, (X, ) Kg (+ 2)
x*2°0707 K, (%, ) K (- z)‘+

holds for

IA

<
L

< Constlsup
-eR"

+Const2 max sup

c]=2n <R"

xazba‘jﬁfKA(x,~)KB(~,z)H +

00

X*2°0707K 5 (%, ) Ky (- z)‘ <

< Constl

+Const2 max

c]=2n

X*2°0507K 4 (X, ) Kg (- 2)

o’
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Next, we exchange the order of the
supremum and integration and obtain (Dp (W) Dp (gp)) =

X2°0207K , (x,) Ko (- 2)]) < =<<(ng/) Z,ﬂ)(Fa¢)(%%X> > _
@] (3089

sup <

X, zeR"

< sp perareri ), 7)) - <:p 202 o((2.0). (8- (2.7)

sup ‘xazba‘jafKA(x, )Kg (- z)‘

X, zeR" L
so, we have W (2%#)
sup [X° 20507 K, (%) Kg (- 2)|| <
X, zeR" L
<Cl sup sup Xazbaz;azﬁKA(X’ ) K, (.’ Z)‘+ Now, we are going to establish that
x,zeR" -eR" l//#(peS(Rzn)

+C2max sup sup‘xazba’jafKA(X, J)Ks (- z)‘ <O (w#e)(x, p)=

\c\=2n X,zeR" -eR"

thus, we obtain K,[K; e S(R” X R”) .

exp[Zﬂ%ia((Z,U)a'—(ZW))j

=F, (x, p)
F F.o)(-—
For the Weyl system, we can formulate (Fv)(z.m) ‘7(0)( (2 77)) (z.7)
the following Weyl quantization theorem. i
exp(zma((x, p),(z,n)))
Theorem. Let functions ic
v.peS(R™) then the  function = eXp(zﬂja((z’ ’7)(%%)}( =
w#peS(R™) and such that satisfies the (Fw)(z.7)(F,0) (%M
equality @m0 ] (s
= 2-
Dp(w #¢)=Dp(y)Dp(¢), exp(zﬂ_'g(()(’ p)’(%%Jr(z’n))]
where &
# X, pP)= 2i
(v #9) (X p) _ exp(27r;|0'((%ﬁ’9,(z,77))jx
exp(27zio((X, p),(z+%n+
(ario((x )zt 1) (F.) (21) (F.0) (9
exp(2ﬂ|§a((z,n),(%%)jx
(Fa‘//)(zaﬂ)(':a¢’)(%% 1) so y #¢ belongs S(RZ”).
_ o Let us denote K, and K  kernels,
exp{4ma((x, p)—(z,n),(x, p)—(%%)] which belong to S(RZ”), then we have
£
(Dp(¥)Dp(p)#)(x) =

v (z,n)p (%M

=((K, *K,)(x)8())( ), =
=((K,K, (~2)#(2))), =Dp(w#9)(x).

Next, using the properties of the
employ the definition of Dp, we have exponential function, we have

Proof. Assume w,peS (RZ") and

E-ISSN: 1998-4464 908
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(w#o)(x, p)=

= L(exp(ZﬂiG((X, p),(Za 77)+(y’ g)))x
27z'§a((z, 77),(3/4))J><
2n'§o((z,ﬂ),(%’?’9)jx

25 o((1.0).(9084)
w ()¢ (¥020) dzdydyd o2t A9 6=

= [ (exp(27icr((2.7). (89— (x, p)))x

R4n

l//(%%(p((x, p)+§(z,n)Ddzdndzﬂ%
By

exp

exp

exp

changing variables

(¥.¢)=(x p)+§(2,77), we are completing

the proof of the theorem.
From  semigroup  properties  of
exponential function follows: let a be a symbol

of S ( R" ) then the Weyl operator is given by

~

Ay (x) =
B e
27n

exp{ Lp-(-2) w2

(z.p)
the kernel of the Weyl operator A is

[ | J exp(%p'(x_y))x

% a[%(xjt y). p)

Ki(xy)=

and the symbol is written as

a(x, p)=

ex —l -z |K (x+lz x—lzj
p 77p A 5% 5 Z-

These formulae are circular via the semigroup

properties.

E-ISSN: 1998-4464

909

Volume 16, 2022

Lemma 3. Assume functions

v, ¢.$<S(R"), then we have equality

(w (). DP(#)o (")) ={4(). W (v, 2)(-))-

The proof follows straightforward from

properties of the exponential function.

V. GENERALIZATION OF THE WEYL
CALCULUS WITH Epp MORPHISM

Let X be a reflexive separable Banach
space and B(X, X) be a space of bounded
operators of on X . The quantization function is
a morphism R"xR"— B(X, X), which maps
phase space R"xR" to the space of bounded
operators B(X, X) on the reflexive separable

Banach space X .

The Weyl system is defined as
W (x, p)=Epp(-1,i o((x p).(Q,P)))®1d(X)

for all points of phase space (X, p).
For any function y, we define the Weyl
quantization by
Dp () =((3.¥)()V ()
and the Weyl product i #¢ as
(w#e)(x p)=
epp(1,i (). (1.0) +(2.5)))
<F, (v)(y.9)F, (¢)(z5)
Epp(lpig o((y.9).(z s)))
The important tool of quantum physics

is an asymptotic expansion of the Weyl product,

which is defined as
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yHp=[y.p|-is{y, p}+0(&*),
when the Banach space X can be equipped

with its natural scalar product then the bracket

{l//, (p} is Poisson brackets with the factor two;

the bracket [l//, (o] is defined pointwise product

[w. 0](x. p)=w (X p)- (X p).
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