

Abstract—The shared autonomous mobility-on-demand

(AMoD) system is a promising business model in the coming

future which provides a more efficient and affordable

urban travel mode. However, to maintain the efficient

operation of AMoD and address the demand and supply

mismatching, a good rebalancing strategy is required. This

paper proposes a reinforcement learning-based rebalancing

strategy to minimize passengers’ waiting in a shared AMoD

system. The state is defined as the nearby supply and

demand information of a vehicle. The action is defined as

moving to a nearby area with eight different directions or

staying idle. A 4.6 × 4.4 km2 region in Cambridge,

Massachusetts, is used as the case study. We trained and

tested the rebalancing strategy in two different demand

patterns: random and first-mile. Results show the proposed

method can reduce passenger’s waiting time by 7% for

random demand patterns and 10% for first-mile demand

patterns.

Keywords—Deep Reinforcement Learning, Autonomous

Mobility-on-Demand(AMoD), Rebalancing, Autonomous

Vehicles(AVs).

I. INTRODUCTION
HE Autonomous Mobility-on-Demand (AMoD) system
represents a new type of mobility services served by

Autonomous Vehicles (AV) [1]. It works as current
transportation network companies (e.g., Uber, Lyft, DiDi)
except for that AVs show 100% compliance to the control
center. The AMoD is considered a promising way to make
mobility easier for passengers and profitable for operators [2].
On the one hand, the flexible scheduling of driverless cars
reduces the waiting time of passengers and also enables
operators to obtain more benefits. On the other hand, the

learning methods used by the program, including various forms
of car sharing, can effectively help consumers reduce travel
costs and make travel more affordable.

However, though there are many potential benefits, one of the
problems in the AMoD system is addressing the potential
imbalance between demand and supply. For example, Fig. 1
shows a single side demand pattern where all passengers move
from blue dot to yellow dot. With limited AVs, most of the
vehicles will be centered around the yellow dot after dropping
off passengers. If all vehicles stay idle when no passengers call
them, there will be a high waiting time for new passengers in
the blue dot because vehicles need to move a long distance to
pick them up, leading to loss of services.

Rebalancing, which means moving idle vehicles to a specific
area so as to serve the future emerging demand, is a potential
way to offset the imbalance. In Fig. 1, the best rebalancing
strategy is moving idle vehicles to the blue dot right after they
finish a trip. However, in the real-world scenario with diverse
demand patterns, how to rebalance idle vehicles remains a
challenge.

Jiajie Dai*
Yancheng Institute of Technology

 1 Xiwang Road, Yancheng, 224007, China

Qianyu Zhu*
Changzhou University

1 Gehu Road, Changzhou, 213164, China

Nan Jiang
Suzhou University of Science and Technology

1701 Binhe Road, Suzhou, 215011,China

Wuyang Wang
Nanjing University of Posts and

Telecommunications
9 Wen Yuan Road, Nanjing, 210023, China

*: Both authors contributed to this paper equally.

 Received: June 20, 2021. Revised: December 8, 2021. Accepted: January 14, 2022. Published: January 15, 2022.

Rebalancing Autonomous Vehicles Using Deep
Reinforcement Learning

T

Fig. 1 example of imbalanced supply and demand

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.80 Volume 16, 2022

E-ISSN: 1998-4464 646

This paper aims to design optimal rebalancing strategies
given various demand patterns using a reinforcement learning
(RL) approach to adaptively move idle vehicles. We assume
that the AMoD system is operated by the government. So the
objective of the control strategy is to reduce passengers’ waiting
time with limited supplies. The main contributions of this paper
are as follows:
• We implement a deep Q network approach for the

AMoD rebalance task. Based on the work by [3], we
specify the action space, state space, environment, and
reward function for the RL algorithm

• We design a case study with various demand patterns to
test the performance of the proposed model. We find that
the algorithm has better performance for scenarios with
more imbalanced demand and supply.

The rest of this article is as follows. The second section
reviews related papers in the literature. Section 3 demonstrates
the core methodology used in this study, including the deep Q
network, definition of action and state spaces, and simulation
engine. In the fourth section, we analyze the effect of the
proposed algorithms in different demand patterns with a case
study in Cambridge, Massachusetts, USA. Finally, the last part
of the article concludes the paper and discusses future work.

II. LITERATURE REVIEW
The development of machine learning brings various

emerging algorithms. In particular, deep neural networks have
achieved fruitful improvements in tasks such as computer
vision, natural language processing, time series prediction, etc.
Reinforcement learning, as a discipline inspired by behavioral
theory in psychology, also gains more and more attention.

In 1954, [4] first proposed the concepts and terms of
“reinforcement” and “reinforcement learning”. In 1965, [5] also
proposed this concept in control theory, describing the basic
idea of learning through rewards and punishments. They all
made it clear that “trial and error” is the core mechanism of
reinforcement learning. In 1977, [6] proposed to adapt only to
dynamic programming algorithms. In 1989, [7] proposed Q
learning and further expanded the application of reinforcement
learning.

In the field of urban transportation, the existing rebalancing
research work mainly focuses on automobiles, rental systems
[8], and public bike-sharing systems [9]. Based on the fluid
model, [10] proposed an optimal rebalance model and simulates
it with a 12-station AMoD system. However, their method is
limited to a simplified station-based network. Besides, they
does not consider the interaction between supply and demand
and only focus on an ideal balance situation. [11] used a
queuing theory method (i.e., Jackson network) by expanding
the idea of fluid. They prove that the system is most effective
when vehicles’ enter and exit rates are similar at each site. The
solution provides an offline optimal rebalancing strategy. If the
information at each time step can be obtained in real time, their
methods can be used for online application.

Recent studies have introduced machine learning approaches
for the control of AMoD systems. For example, [3] proposes a

reinforcement learning method for the rebalance of the AMoD
system [12] used a reinforcement learning model to control the
dispatch of the autonomous taxi. This study extends the work
from [3] to apply a deep Q network for the rebalance of AMoD
systems. Compared to [3], we conduct a more complicated
scenario analysis with different demand patterns.

III. METHODOLOGY
Suppose we are providing AMoD services to a service region

within a certain period of time T. Assume that the regions have
been discretized into a set of disjoint zones. We further assume
the service time is represented by discrete time intervals ∆𝑡.

For all idle vehicles (i.e., vehicles without passengers) at
specific time intervals 𝑡, we aim to design a model to provide
strategies on where the vehicle should move to. This can be
done using a reinforcement learning (RL) approach. RL is a
learning approach to map states to actions so as to maximize a
numerical reward in an unknown and uncertain environment.

Fig. 2 shows the framework of an RL model. At time 𝑡, the
RL agent receives state (environment) information st, and takes
action 𝑎𝑡. The action will change the environment and generate
a reward 𝑟𝑡 to the agent. And the objective of the agent is to
maximize the expected total reward:

𝑉(𝑠) = 𝔼 [∑ 𝛾𝑡 ∙ 𝑟𝑡

𝑇

𝑡=0

|𝑠0 = 𝑠] (1)

where 0 < γ < 1 is a discount factor. Equation (1) means that
the reward in the future is weighted less than the immediate
reward. s is the initial system state.

In a reinforcement learning model, we need to specify the
state space, action space, and reward function. In the following
sections, we will discuss how the model is specified.

A. State space

We first divide the service region into a number of equal
grids. Define the set of all grids as G. For a specific grid 𝑖, the
set of its neighboring grids (e.g., 5×5 centered at grid 𝑖) is
defined as 𝐺𝑖.

Considering a vehicle in grid 𝑖 at time 𝑡, the state vector is
defined as:

𝑠𝑖,𝑡 = [(𝑏𝑗,𝑡 , 𝑑𝑗,𝑡+1)]
𝑗∈𝐺𝑖

 (2)

Fig. 2 illustration of reinforcement learning

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.80 Volume 16, 2022

E-ISSN: 1998-4464 647

where 𝑏𝑗,𝑡 is the number of available vehicles in grid j at time 𝑡,
and 𝑑𝑗,𝑡+1 is the expected demand (i.e., passenger requests) for
grid 𝑗 at time 𝑡 + 1. Note that 𝑏𝑗,𝑡 provides the current supply
information, while 𝑑𝑗,𝑡+1 provides the future demand
information. In this study, we assume the future demand 𝑑𝑗,𝑡+1
is known.

Fig 3 shows an example of how the service region is divided
and the definition of neighboring grids. In the example service
region, there are two vehicles (yellow and green). 𝐺𝑖 is the set
of all grids in the green (yellow) squares for the green (yellow)
vehicle. This means vehicles can get the supply and demand
information from nearby areas.

B. Action space

For an idle vehicle at grid 𝑖, we assume it can move to nearby
grids or stay at grid 𝑖 in the next time interval. Therefore, the
action space is defined as:

𝐴 = {𝑁𝑊, 𝑁, 𝑁𝐸, 𝐸, 𝑆𝐸, 𝑆, 𝑆𝑊, 𝑊, 𝑂} (3)

for all time step as shown in Fig. 4, where 𝑁, 𝑊, 𝐸, 𝑆 represents
North, West, East, and South, respectively.

 With the action space, a reinforcement learning model will

output the best action to take given a specific state vector.

C. Simulation engine

To simulate the AMoD system, we use the simulation model
proposed in [13] for this study. The simulation algorithm is
shown in Algorithm 1.

Algorithm 1. Simulation model.
procedure Simulation(𝑫, 𝑽):

initialize the system based on 𝑫 and 𝑽
 𝒕 = 𝟎

while 𝒕 < 𝑻 do:
 generate next passenger request within [𝒕, 𝒕 + 𝚫𝒕].

 add new requests to the request queue.
 update time 𝒕 = 𝒕 + 𝚫𝒕
 move all vehicles up to time 𝒕
 for each vehicle do:

 drop off passengers if onboard passengers reach the destination
 pick up passengers if the vehicle reaches the origin
 assign “idle” state to if the vehicle is empty
 assign “in-service” state if the vehicle has onboard passengers

 for each request do:
 if exist vehicle satisfying service criteria do:
 assign the nearest available vehicle to the request

 for each “idle” vehicle do:
 let the location of the idle vehicle be grid 𝒊
 𝒂𝒊,𝒕 = DQN(𝒔𝒊,𝒕)

 Rebalance(the vehicle, 𝒂𝒊,𝒕)
return each passenger’s waiting time

The model simulates the AMoD service within the time

period 𝑇 given the demand information 𝐷 and supply
information 𝑉, where 𝑉 is the maximum number of vehicles in
the system. 𝐷 is the expected number of requests during the
time period 𝑇. We assume the incoming demand is a Poisson
process. That is, over a specific time period, the number of
incoming requests in grid 𝑖 with the destination at grid 𝑗
follows the Poisson distribution with arrival rate 𝜆𝑖𝑗.

There are two states of a vehicle. If a vehicle is assigned to
travelers, it has the state of “in-service”. Otherwise, it has the
state of “idle” and is available to be rebalanced. For each
request, we will evaluate the number of available vehicles using
the following service criteria:1) the vehicle has available
capacity, 2) the estimated waiting time for the passenger is not
too large, 3) the detour rate for on-board passengers is not too
large. Passenger wait time is defined as the time difference
between a traveler sending out the request and s/he is picked up
by a vehicle. When passengers in the queue reach the maximum
waiting time, we assume they will forgive the AMoD service
and use other modes. In this case, we define an indicator
“service rate” to describe the proportion of demands that are
successfully served.

Vehicle rebalancing is run every 𝛥𝑡 time. The rebalancing
action is obtained from the deep Q network (DQN), which we
will elaborate on later.

Fig. 3 illustration of state space

Fig. 4 illustration of action space

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.80 Volume 16, 2022

E-ISSN: 1998-4464 648

D. Reward function

As mentioned before, we assume the AMoD system is
operated by the government with reducing waiting time as their
objective. Consider an idle vehicle at grid 𝑖, the reward function
at time step 𝑡 is defined as:

𝑟𝑡 ≔ 𝑅(𝑠𝑖,𝑡 , 𝑎𝑡) = −[𝑆𝐼𝑀(𝑎𝑡 , 𝑠𝑖,𝑡) − 𝑆𝐼𝑀(“𝑂”, 𝑠𝑖,𝑡)]

− 𝑐𝑟(𝑎𝑡)
(4)

where 𝑎𝑡 ∈ 𝐴 is the action at time 𝑡. 𝑅(𝑠, 𝑎) is the immediate
reward function for the vehicle after taking action 𝑎 under state
s. SIM(𝑎, 𝑠) is the simulation engine that can return passengers’
waiting time for an episode. “𝑂” is the action of no rebalancing.
𝑐𝑟(𝑎𝑡) is a fixed cost of taking rebalancing action, defined as：

𝑐𝑟(𝑎𝑡) = {
0, 𝑎𝑡 = "𝑂"
𝑐, Otherwise

 (5)

we use 𝑐𝑟(𝑎𝑡) to discourage empty-running of rebalancing
distance and limit the operational cost.

Eq. 4 indicates that immediate reward is calculated as the
waiting time of passengers under DQN strategy minus the
waiting time of passengers without rebalancing. Note that when
the action of DQN is “𝑂” (i.e., 𝑎𝑡 = "𝑂"), the vehicle remains
idle during the rebalancing period, the immediate reward is 0.

The reason for using waiting time difference as the reward,
rather than the waiting time itself, is that waiting time itself can
be affected by many reasons (e.g., the origin location), we want
to extract the “true” effect of rebalancing on reducing waiting
time. Hence, 𝑆𝐼𝑀(“𝑂”, 𝑠𝑖,𝑡) plays a role of a base model where
no rebalancing is used.

E. Deep Q network

The DQN (Deep Q-Network) algorithm was developed by
[14]. It was proposed to solve a wide range of games by
combining RL and deep neural networks. The algorithm was
developed by enhancing a classic RL algorithm called Q-
Learning with deep neural networks to represent the Q function.

Q-learning [15] is a typical reinforcement learning method
for agents to learn how to act optimally in controlled Markovian
domains. In the Q-learning algorithm, the Q-value represents
the expected utility of an agent executing the action in the
current state. The RL agent intends to select the action with the
maximal value of the utility, i.e., the Q-value. The Q-value
function for the particular action and state is updated according
to the reward received from the environment after executing the
action in the current state. For each state and action pair (𝑠, 𝑎),
the Q-value is initialized as 0 at the beginning of the learning
process.

Considering that the current station is s and the vehicle takes
action 𝑎, it moves to a new grid (or no-move) with a new state
s′ . Then the Q-value is updated based on the following
equations:

𝑄(𝑠, 𝑎) = (1 − 𝛼)𝑄(𝑠, 𝑎) + 𝛼 (𝑅(𝑠, 𝑎) + 𝛾 ∙ max

𝑎′∈𝐴
𝑄(𝑠′, 𝑎′))

(6)

where 𝛼 ∈ (0,1) is the learning rate.
We define the optimal Q-value (𝑄∗(𝑠, 𝑎)) as the maximum

return that can be obtained starting from state s, taking action
a. It can be shown that this update will make 𝑄(𝑠, 𝑎) converges
to the optimal Q-value function 𝑄∗(𝑠, 𝑎) [14]. And the optimal
policy for the vehicle given state 𝑠 is

𝜋∗(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥

𝑎∈𝐴
𝑄∗(𝑠, 𝑎) (7)

For most problems, it is impractical to represent the Q-
function as a table containing values for each combination of 𝑠
and 𝑎 because of the large number of possible combinations.
However, in the DQN, instead, we train a function
approximator, a neural network with parameters 𝜃, to estimate
the Q-vales (see Fig. 5).

The loss function when training the DQN is defined as:

𝐿(𝜃) = ∑ (𝑟 + 𝛾 ∙ 𝑚𝑎𝑥
𝑎′∈𝐴

𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎))

2

(𝑠,𝑎,𝑟,𝑠′)∈𝛺𝑖

 (8)

where 𝛺𝑖 is the set of replay buffers at the 𝑖-th training epoch.
After the training, this Q-value function is used to guide the
rebalancing actions of all idle vehicles in the simulation
algorithm.

To train a DQN, the simulation engine is run for a period of
time. At every time 𝑡, the vehicles are rebalanced with a 𝜀-
greedy method: with probability 𝜀, vehicles take action 𝑎 ∈ 𝐴
randomly. And with probability 1 − 𝜀 , vehicles take action
𝑎𝑟𝑔𝑚𝑎𝑥

𝑎∈𝐴
𝑄(𝑠, 𝑎), where 𝑄(𝑠, 𝑎) is the currently estimated Q-

values based on DQN. All the past experience is stored by the
user in replay buffers 𝛺𝑖 at the 𝑖-th training epoch. And the
DQN is updated with the gradient descent on the above loss
function (Eq. 8). The detailed training process of the DQN can
be found in [14].

Fig. 5 architecture of DQN

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.80 Volume 16, 2022

E-ISSN: 1998-4464 649

IV. CASE STUDY AND RESULTS

A. Case study setting

We choose a 4.6 × 4.4 km2 region in Cambridge as the case
study (Fig. 6). We divide the map into 10 × 10 grids. The AV
fleet size is set as 20. The total demand is set as 60 trips/hour.
The rebalancing cost is set as 𝑐 = 5. The DQN is trained with a
three-layer neural network beforehand with 250 training
epochs, using 𝜀-greedy behavior policy and a replay memory of
100 most recent steps in batches of size 32. The learning rate is
set to be 0.001 with no decay for the Adam optimizer. Every
training process is conducted with 10 replications and the
average results are reported. The codes used in this study are
modified from [3].

B. Simulation scenes design

We consider two scenarios with respect to different demand
patterns: random demand and first-mile (FM) demand (Fig. 6).
The random demand is generated by randomly selecting fifteen
OD pairs and each OD pair is assigned a flow proportion
uniformly ranging from 0 to 1. It represents a uniformly
distributed demand pattern. The FM demand is generated by
setting a fixed destination in the center of the map (i.e., a
subway station) and randomly selecting fifteen origins. Each
OD pair is assigned the same flow proportion (i.e., 1/15). Note
that the FM demand is considered because AMoD is considered
to be implemented as a first-mile feeding service to public
transit [16], [17].

These two demand patterns used in this study are shown in
Fig. 7. Obviously, FM demand has a larger imbalance between
demand and supply because vehicles are easily centered to the
destination area (see Fig. 7). Therefore, passengers in FM
demand scenarios may have a higher waiting time, and we
expect the control strategy works more effectively in the FM
demand pattern.

Fig.7: Demand patterns. (Left: FM demand. Right: Random

demand)

C. Results

Fig. 8 shows the results of the training process for the FM
scenario. The average rewards become stable after around 100
episodes (irregular ups and downs are due to randomness in
training), showing that the DQN control strategy has
converged. The converged reward is greater than 0. Since the
reward is defined as the difference in waiting time (see Eq 4),
we conclude that the DQN has learned better control strategies
than the no-rebalance bassline.

Tab. 1 compares the performance of the rebalancing methods

(DQN vs. No rebalance) under two demand patterns. Besides
waiting time, we also report the service rate (i.e., the proportion
of passengers being served) and rebalance distance (i.e., the
travel distance of AVs for rebalancing purposes). For the FM
demand scenario, compared to no-rebalance, the DQN can
reduce the waiting time from 6.87 minutes to 6.16 minutes (-
10.33%). For the random demand scenario, rebalancing can
reduce the waiting time from 5.77 minutes to 5.37 minutes (-
6.9%). Both of the scenarios show that the proposed DQN
rebalancing strategies can effectively reduce passenger waiting
time. It is worth noting that, due to the reduction in passenger
waiting time, we also improve the service rate of the system,
which implies that more passengers are served with rebalancing
strategies given the limited supply. However, the system
improvement also brings higher rebalance travel distance
because vehicles need to travel more to pick up passengers.

Fig. 6 case study region.

Fig. 8 training process

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.80 Volume 16, 2022

E-ISSN: 1998-4464 650

Tab. 1 results comparison

Demand

pattern
Rebalance

Avg

waiting

time (min)

Service

rate (%)

Rebalance

distance (km)

First-
mile

DQN 6.16 (0.24) 53.8 (1.4) 8.93 (1.4)

No-
rebalance 6.87 (0.01) 53.4 (0.0) 0 (0)

Random
DQN 5.37 (0.19) 57.4 (0.7) 7.36 (1.4)

No-
rebalance 5.77 (0.01) 56.8 (0.0) 0 (0)

(The numbers in brackets represent standard deviation across different
experiment replications).

V. CONCLUSION AND FUTURE RESEARCH
This paper develops a reinforcement learning-based

rebalancing strategy in order to minimize passengers’ waiting
time in an AMoD system. We use the city of Cambridge in
Massachusetts as a case study. Results show that, with the
rebalancing using a deep Q network, passengers’ waiting time
can be reduced, the waiting time reduction is more significant
when the demand and supply show higher imbalance (such as
the first-mile demand).

Future research can be conducted in the following directions:
1) Due to lack of data, this study does not have real-world
demand information. Future studies can test the model using
actual demand and supply scenarios to enrich the results. The
actual demand can be estimated from models using license plate
recognition data [18], [19]. 2) As there are many vehicles in the
system, future studies may consider using multi-agent
reinforcement learning to discover potential cooperative
behavior among different vehicles. 3) The DQN can be
compared with other control strategies, such as simulation-
based optimization [20]. 4) This study only focuses on reducing
waiting time. Future studies can test the model performance in
different metrics, such as maximizing social welfare or total
profit.

References
[1] B. Mo, Q. Y. Wang, J. Moody, Y. Shen, and J. Zhao,

“Impacts of subjective evaluations and inertia from
existing travel modes on adoption of autonomous
mobility-on-demand,” Transp. Res. Part C Emerg.

Technol., vol. 130, p. 103281, 2021.
[2] B. Mo, Z. Cao, Z. Hongmou, Y. Shen, and J. Zhao,

“Competition between Shared Autonomous Vehicles
and Public Transit: A Case Study in Singapore,”
Transp. Res. Part C Emerg. Technol., 2021.

[3] J. Wen, J. Zhao, and P. Jaillet, “Rebalancing shared
mobility-on-demand systems: A reinforcement
learning approach,” in 2017 IEEE 20th International

Conference on Intelligent Transportation Systems

(ITSC), 2017, pp. 220–225.
[4] M. L. Minsky, Theory of neural-analog reinforcement

systems and its application to the brain-model

problem. Princeton University, 1954.

[5] M. Waltz and K. Fu, “A heuristic approach to
reinforcement learning control systems,” IEEE Trans.

Automat. Contr., vol. 10, no. 4, pp. 390–398, 1965.
[6] P. Werbos, “Advanced forecasting methods for global

crisis warning and models of intelligence,” Gen. Syst.

Yearb., pp. 25–38, 1977.
[7] C. J. C. H. Watkins, “Learning from delayed rewards,”

1989.
[8] B. Boyacı, K. G. Zografos, and N. Geroliminis, “An

integrated optimization-simulation framework for
vehicle and personnel relocations of electric
carsharing systems with reservations,” Transp. Res.

Part B Methodol., vol. 95, pp. 214–237, 2017.
[9] M. Dell, E. Hadjicostantinou, M. Iori, and S.

Novellani, “The bike sharing rebalancing problem :
Mathematical formulations and benchmark instances
The bike sharing rebalancing problem : Mathematical
formulations and benchmark instances,” Omega, vol.
45, no. January 2018, pp. 7–19, 2013.

[10] M. Pavone, S. L. Smith, and D. Rus, “Robotic Load
Balancing for Mobility-on-Demand Systems ∗,” pp.
0–25, 2012.

[11] R. Zhang, “Control of Robotic Mobility-On-Demand
Systems : a Queueing-Theoretical Perspective,” Int. J.

Rob. Res., 2016.
[12] C. Mao, Y. Liu, and Z.-J. M. Shen, “Dispatch of

autonomous vehicles for taxi services: A deep
reinforcement learning approach,” Transp. Res. Part C

Emerg. Technol., vol. 115, p. 102626, 2020.
[13] J. Wen, Y. X. Chen, N. Nassir, and J. Zhao, “Transit-

oriented autonomous vehicle operation with integrated
demand-supply interaction,” Transp. Res. Part C

Emerg. Technol., vol. 97, pp. 216–234, 2018.
[14] V. Mnih et al., “Human-level control through deep

reinforcement learning,” Nature, vol. 518, no. 7540,
pp. 529–533, 2015.

[15] C. J. C. H. Watkins and P. Dayan, “Q-learning,”
Mach. Learn., vol. 8, no. 3–4, pp. 279–292, 1992.

[16] B. Mo, Y. Shen, and J. Zhao, “Impact of Built
Environment on First- and Last-Mile Travel Mode
Choice,” Transp. Res. Rec., 2018.

[17] Y. Shen, B. Mo, X. Zhang, and J. Zhao, “Built
Environment and Autonomous Vehicle Mode Choice:
A First-Mile Scenario in Singapore,” 2019.

[18] B. Mo, R. Li, and J. Dai, “Estimating dynamic origin–
destination demand: A hybrid framework using license
plate recognition data,” Comput. Civ. Infrastruct.

Eng., vol. 35, no. 7, pp. 734–752, 2020.
[19] B. Mo, R. Li, and X. Zhan, “Speed profile estimation

using license plate recognition data,” Transp. Res.

Part C Emerg. Technol., vol. 82, pp. 358–378, 2017.
[20] B. Mo, Z. Ma, H. N. Koutsopoulos, and J. Zhao,

“Calibrating Path Choices and Train Capacities for
Urban Rail Transit Simulation Models Using Smart
Card and Train Movement Data,” J. Adv. Transp., vol.
2021, p. 5597130, 2021.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.80 Volume 16, 2022

E-ISSN: 1998-4464 651

Contribution of individual authors to the creation

of a scientific article

• Jiajie Dai implemented the deep Q network,
conducted the case study, and wrote the manuscript.

• Qianyu Zhu proposed the reinforcement learning
model and revised the manuscript.

• Nan Jiang implemented the simulation model.
• Wuyang Wang generated the synthetic demand data.

Creative Commons Attribution License 4.0

(Attribution 4.0 International , CC BY 4.0)
This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.80 Volume 16, 2022

E-ISSN: 1998-4464 652

https://creativecommons.org/licenses/by/4.0/deed.en_US

