
 
Abstract—The shared autonomous mobility-on-demand 

(AMoD) system is a promising business model in the coming 

future which provides a more efficient and affordable 

urban travel mode. However, to maintain the efficient 

operation of AMoD and address the demand and supply 

mismatching, a good rebalancing strategy is required. This 

paper proposes a reinforcement learning-based rebalancing 

strategy to minimize passengers’ waiting in a shared AMoD 

system. The state is defined as the nearby supply and 

demand information of a vehicle. The action is defined as 

moving to a nearby area with eight different directions or 

staying idle. A 4.6 ×  4.4 km2 region in Cambridge, 

Massachusetts, is used as the case study. We trained and 

tested the rebalancing strategy in two different demand 

patterns: random and first-mile. Results show the proposed 

method can reduce passenger’s waiting time by 7% for 

random demand patterns and 10% for first-mile demand 

patterns. 

 

Keywords—Deep Reinforcement Learning, Autonomous 

Mobility-on-Demand(AMoD), Rebalancing, Autonomous 

Vehicles(AVs). 

I. INTRODUCTION 
HE Autonomous Mobility-on-Demand (AMoD) system 
represents a new type of mobility services served by 

Autonomous Vehicles (AV) [1]. It works as current 
transportation network companies (e.g., Uber, Lyft, DiDi) 
except for that AVs show 100% compliance to the control 
center. The AMoD is considered a promising way to make 
mobility easier for passengers and profitable for operators [2]. 
On the one hand, the flexible scheduling of driverless cars 
reduces the waiting time of passengers and also enables 
operators to obtain more benefits. On the other hand, the 

learning methods used by the program, including various forms 
of car sharing, can effectively help consumers reduce travel 
costs and make travel more affordable.  

However, though there are many potential benefits, one of the 
problems in the AMoD system is addressing the potential 
imbalance between demand and supply. For example, Fig. 1 
shows a single side demand pattern where all passengers move 
from blue dot to yellow dot. With limited AVs, most of the 
vehicles will be centered around the yellow dot after dropping 
off passengers. If all vehicles stay idle when no passengers call 
them, there will be a high waiting time for new passengers in 
the blue dot because vehicles need to move a long distance to 
pick them up, leading to loss of services. 

Rebalancing, which means moving idle vehicles to a specific 
area so as to serve the future emerging demand, is a potential 
way to offset the imbalance. In Fig. 1, the best rebalancing 
strategy is moving idle vehicles to the blue dot right after they 
finish a trip. However, in the real-world scenario with diverse 
demand patterns, how to rebalance idle vehicles remains a 
challenge.  
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This paper aims to design optimal rebalancing strategies 
given various demand patterns using a reinforcement learning 
(RL) approach to adaptively move idle vehicles. We assume 
that the AMoD system is operated by the government. So the 
objective of the control strategy is to reduce passengers’ waiting 
time with limited supplies. The main contributions of this paper 
are as follows: 
• We implement a deep Q network approach for the 

AMoD rebalance task. Based on  the work by [3], we 
specify the action space, state space, environment, and 
reward function for the RL algorithm 

• We design a case study with various demand patterns to 
test the performance of the proposed model. We find that 
the algorithm has better performance for scenarios with 
more imbalanced demand and supply.  

The rest of this article is as follows. The second section 
reviews related papers in the literature. Section 3 demonstrates 
the core methodology used in this study, including the deep Q 
network, definition of action and state spaces, and simulation 
engine. In the fourth section, we analyze the effect of the 
proposed algorithms in different demand patterns with a case 
study in Cambridge, Massachusetts, USA. Finally, the last part 
of the article concludes the paper and discusses future work. 

II. LITERATURE REVIEW 
The development of machine learning brings various 

emerging algorithms. In particular, deep neural networks have 
achieved fruitful improvements in tasks such as computer 
vision, natural language processing, time series prediction, etc. 
Reinforcement learning, as a discipline inspired by behavioral 
theory in psychology, also gains more and more attention. 

In 1954, [4] first proposed the concepts and terms of 
“reinforcement” and “reinforcement learning”. In 1965, [5] also 
proposed this concept in control theory, describing the basic 
idea of learning through rewards and punishments. They all 
made it clear that “trial and error” is the core mechanism of 
reinforcement learning.  In 1977, [6] proposed to adapt only to 
dynamic programming algorithms. In 1989, [7] proposed Q 
learning and further expanded the application of reinforcement 
learning.  

In the field of urban transportation, the existing rebalancing 
research work mainly focuses on automobiles, rental systems 
[8], and public bike-sharing systems [9]. Based on the fluid 
model, [10] proposed an optimal rebalance model and simulates 
it with a 12-station AMoD system. However, their method is 
limited to a simplified station-based network. Besides, they 
does not consider the interaction between supply and demand 
and only focus on an ideal balance situation. [11] used a 
queuing theory method (i.e., Jackson network) by expanding 
the idea of fluid. They prove that the system is most effective 
when vehicles’ enter and exit rates are similar at each site. The 
solution provides an offline optimal rebalancing strategy. If the 
information at each time step can be obtained in real time, their 
methods can be used for online application.  

Recent studies have introduced machine learning approaches 
for the control of AMoD systems. For example, [3] proposes a 

reinforcement learning method for the rebalance of the AMoD 
system [12] used a reinforcement learning model to control the 
dispatch of the autonomous taxi. This study extends the work 
from [3] to apply a deep Q network for the rebalance of AMoD 
systems. Compared to [3], we conduct a more complicated 
scenario analysis with different demand patterns.  

III. METHODOLOGY 
Suppose we are providing AMoD services to a service region 

within a certain period of time T. Assume that the regions have 
been discretized into a set of disjoint zones. We further assume 
the service time is represented by discrete time intervals ∆𝑡. 

For all idle vehicles (i.e., vehicles without passengers) at 
specific time intervals 𝑡, we aim to design a model to provide 
strategies on where the vehicle should move to. This can be 
done using a reinforcement learning (RL) approach. RL is a 
learning approach to map states to actions so as to maximize a 
numerical reward in an unknown and uncertain environment.     

Fig. 2 shows the framework of an RL model. At time 𝑡, the 
RL agent receives state (environment) information st, and takes 
action 𝑎𝑡. The action will change the environment and generate 
a reward 𝑟𝑡 to the agent. And the objective of the agent is to 
maximize the expected total reward: 

 

𝑉(𝑠) = 𝔼 [∑ 𝛾𝑡 ∙  𝑟𝑡

𝑇

𝑡=0

|𝑠0 = 𝑠]                    (1) 

 
where 0 < γ < 1 is a discount factor. Equation (1) means that 
the reward in the future is weighted less than the immediate 
reward. s is the initial system state. 

In a reinforcement learning model, we need to specify the 
state space, action space, and reward function. In the following 
sections, we will discuss how the model is specified. 

A. State space 

We first divide the service region into a number of equal 
grids. Define the set of all grids as G. For a specific grid 𝑖, the 
set of its neighboring grids (e.g., 5×5 centered at grid 𝑖 ) is 
defined as 𝐺𝑖. 

Considering a vehicle in grid 𝑖 at time 𝑡, the state vector is 
defined as: 

𝑠𝑖,𝑡 = [(𝑏𝑗,𝑡 , 𝑑𝑗,𝑡+1)]
𝑗∈𝐺𝑖

                          (2) 

 

 

 
                                    

Fig. 2 illustration of reinforcement learning 
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where 𝑏𝑗,𝑡 is the number of available vehicles in grid j at time 𝑡, 
and 𝑑𝑗,𝑡+1 is the expected demand (i.e., passenger requests) for 
grid 𝑗 at time 𝑡 + 1. Note that 𝑏𝑗,𝑡 provides the current supply 
information, while 𝑑𝑗,𝑡+1  provides the future demand 
information. In this study, we assume the future demand 𝑑𝑗,𝑡+1 
is known. 

Fig 3 shows an example of how the service region is divided 
and the definition of neighboring grids. In the example service 
region, there are two vehicles (yellow and green). 𝐺𝑖 is the set 
of all grids in the green (yellow) squares for the green (yellow) 
vehicle. This means vehicles can get the supply and demand 
information from nearby areas.  

B. Action space 

For an idle vehicle at grid 𝑖, we assume it can move to nearby 
grids or stay at grid 𝑖 in the next time interval. Therefore, the 
action space is defined as: 

 
𝐴 =  {𝑁𝑊, 𝑁, 𝑁𝐸, 𝐸, 𝑆𝐸, 𝑆, 𝑆𝑊, 𝑊, 𝑂}               (3) 

 
for all time step as shown in Fig. 4, where 𝑁, 𝑊, 𝐸, 𝑆 represents 
North, West, East, and South, respectively. 

 
  With the action space, a reinforcement learning model will 

output the best action to take given a specific state vector. 

C. Simulation engine 

To simulate the AMoD system, we use the simulation model 
proposed in [13] for this study. The simulation algorithm is 
shown in Algorithm 1. 

 
Algorithm 1. Simulation model. 
procedure Simulation(𝑫, 𝑽): 

initialize the system based on 𝑫 and 𝑽 
   𝒕 = 𝟎 

while 𝒕 <  𝑻 do: 
   generate next passenger request within [𝒕, 𝒕 + 𝚫𝒕]. 

    add new requests to the request queue. 
    update time 𝒕 = 𝒕 + 𝚫𝒕 
    move all vehicles up to time 𝒕 
    for each vehicle do: 

    drop off passengers if onboard passengers reach the destination 
    pick up passengers if the vehicle reaches the origin 
    assign “idle” state to if the vehicle is empty 
    assign “in-service” state if the vehicle has onboard passengers 

        for each request do: 
          if exist vehicle satisfying service criteria do: 
              assign the nearest available vehicle to the request 

   for each “idle” vehicle do: 
    let the location of the idle vehicle be grid 𝒊 
    𝒂𝒊,𝒕 = DQN(𝒔𝒊,𝒕) 

    Rebalance(the vehicle, 𝒂𝒊,𝒕) 
return each passenger’s waiting time 

 
 
The model simulates the AMoD service within the time 

period 𝑇  given the demand information 𝐷  and supply 
information 𝑉, where 𝑉 is the maximum number of vehicles in 
the system. 𝐷 is the expected number of requests during the 
time period 𝑇. We assume the incoming demand is a Poisson 
process. That is, over a specific time period, the number of 
incoming requests in grid 𝑖  with the destination at grid 𝑗 
follows the Poisson distribution with arrival rate 𝜆𝑖𝑗.  

There are two states of a vehicle. If a vehicle is assigned to 
travelers, it has the state of “in-service”. Otherwise, it has the 
state of “idle” and is available to be rebalanced. For each 
request, we will evaluate the number of available vehicles using 
the following service criteria:1) the vehicle has available 
capacity, 2) the estimated waiting time for the passenger is not 
too large, 3) the detour rate for on-board passengers is not too 
large. Passenger wait time is defined as the time difference 
between a traveler sending out the request and s/he is picked up 
by a vehicle. When passengers in the queue reach the maximum 
waiting time, we assume they will forgive the AMoD service 
and use other modes. In this case, we define an indicator 
“service rate” to describe the proportion of demands that are 
successfully served. 

Vehicle rebalancing is run every 𝛥𝑡 time. The rebalancing 
action is obtained from the deep Q network (DQN), which we 
will elaborate on later. 

 
 
 
 
 
 

 

 
                                    

Fig. 3 illustration of state space 
 

            
Fig. 4 illustration of action space 
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D. Reward function  

As mentioned before, we assume the AMoD system is 
operated by the government with reducing waiting time as their 
objective. Consider an idle vehicle at grid 𝑖, the reward function 
at time step 𝑡 is defined as: 

 
𝑟𝑡 ≔ 𝑅(𝑠𝑖,𝑡  , 𝑎𝑡)  = −[𝑆𝐼𝑀(𝑎𝑡 , 𝑠𝑖,𝑡) −  𝑆𝐼𝑀(“𝑂”, 𝑠𝑖,𝑡)]

− 𝑐𝑟(𝑎𝑡)         
(4)   

 
where 𝑎𝑡 ∈ 𝐴 is the action at time 𝑡. 𝑅(𝑠, 𝑎) is the immediate 
reward function for the vehicle after taking action 𝑎 under state 
s. SIM(𝑎, 𝑠) is the simulation engine that can return passengers’ 
waiting time for an episode. “𝑂” is the action of no rebalancing. 
𝑐𝑟(𝑎𝑡) is a fixed cost of taking rebalancing action, defined as： 
 

𝑐𝑟(𝑎𝑡) = {
0, 𝑎𝑡 = "𝑂"
𝑐, Otherwise

                       (5) 

 
we use 𝑐𝑟(𝑎𝑡)  to discourage empty-running of rebalancing 
distance and limit the operational cost.  

Eq. 4 indicates that immediate reward is calculated as the 
waiting time of passengers under DQN strategy minus the 
waiting time of passengers without rebalancing. Note that when 
the action of DQN is “𝑂” (i.e., 𝑎𝑡 = "𝑂"), the vehicle remains 
idle during the rebalancing period, the immediate reward is 0.  

The reason for using waiting time difference as the reward, 
rather than the waiting time itself, is that waiting time itself can 
be affected by many reasons (e.g., the origin location), we want 
to extract the “true” effect of rebalancing on reducing waiting 
time. Hence, 𝑆𝐼𝑀(“𝑂”, 𝑠𝑖,𝑡) plays a role of a base model where 
no rebalancing is used. 

E. Deep Q network 

The DQN (Deep Q-Network) algorithm was developed by 
[14]. It was proposed to solve a wide range of games by 
combining RL and deep neural networks.  The algorithm was 
developed by enhancing a classic RL algorithm called Q-
Learning with deep neural networks to represent the Q function. 

Q-learning [15] is a typical reinforcement learning method 
for agents to learn how to act optimally in controlled Markovian 
domains. In the Q-learning algorithm, the Q-value represents 
the expected utility of an agent executing the action in the 
current state. The RL agent intends to select the action with the 
maximal value of the utility, i.e., the Q-value. The Q-value 
function for the particular action and state is updated according 
to the reward received from the environment after executing the 
action in the current state. For each state and action pair (𝑠, 𝑎), 
the Q-value is initialized as 0 at the beginning of the learning 
process. 

Considering that the current station is s and the vehicle takes 
action 𝑎, it moves to a new grid (or no-move) with a new state 
s′ . Then the Q-value is updated based on the following 
equations: 

 
𝑄(𝑠, 𝑎) = (1 − 𝛼)𝑄(𝑠, 𝑎) + 𝛼 (𝑅(𝑠, 𝑎) + 𝛾 ∙ max

𝑎′∈𝐴
𝑄(𝑠′, 𝑎′))  

(6) 
 

where 𝛼 ∈ (0,1) is the learning rate. 
We define the optimal Q-value (𝑄∗(𝑠, 𝑎)) as the maximum 

return that can be obtained starting from state s, taking action 
a. It can be shown that this update will make 𝑄(𝑠, 𝑎) converges 
to the optimal Q-value function 𝑄∗(𝑠, 𝑎) [14]. And the optimal 
policy for the vehicle given state 𝑠 is 

 
𝜋∗(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥

𝑎∈𝐴
𝑄∗(𝑠, 𝑎)                            (7) 

 

For most problems, it is impractical to represent the Q-
function as a table containing values for each combination of 𝑠 
and 𝑎 because of the large number of possible combinations. 
However, in the DQN, instead, we train a function 
approximator, a neural network with parameters 𝜃, to estimate 
the Q-vales (see Fig. 5).  

The loss function when training the DQN is defined as: 
 

𝐿(𝜃) = ∑ (𝑟 + 𝛾 ∙ 𝑚𝑎𝑥
𝑎′∈𝐴

𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎))

2

(𝑠,𝑎,𝑟,𝑠′)∈𝛺𝑖

 (8) 

 
where 𝛺𝑖 is the set of replay buffers at the 𝑖-th training epoch. 
After the training, this Q-value function is used to guide the 
rebalancing actions of all idle vehicles in the simulation 
algorithm.  

To train a DQN, the simulation engine is run for a period of 
time. At every time 𝑡, the vehicles are rebalanced with a 𝜀-
greedy method: with probability 𝜀, vehicles take action 𝑎 ∈ 𝐴 
randomly. And with probability 1 − 𝜀 , vehicles take action 
𝑎𝑟𝑔𝑚𝑎𝑥

𝑎∈𝐴
𝑄(𝑠, 𝑎), where 𝑄(𝑠, 𝑎) is the currently estimated Q-

values based on DQN.  All the past experience is stored by the 
user in replay buffers 𝛺𝑖  at the 𝑖-th training epoch. And the 
DQN is updated with the gradient descent on the above loss 
function (Eq. 8). The detailed training process of the DQN can 
be found in [14]. 
 
 
 
 
 

 

 
                                    

Fig. 5 architecture of DQN 
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IV. CASE STUDY AND RESULTS 

A. Case study setting  

We choose a 4.6 × 4.4 km2 region in Cambridge as the case 
study (Fig. 6). We divide the map into 10 × 10 grids. The AV 
fleet size is set as 20. The total demand is set as 60 trips/hour. 
The rebalancing cost is set as 𝑐 = 5. The DQN is trained with a 
three-layer neural network beforehand with 250 training 
epochs, using 𝜀-greedy behavior policy and a replay memory of 
100 most recent steps in batches of size 32. The learning rate is 
set to be 0.001 with no decay for the Adam optimizer. Every 
training process is conducted with 10 replications and the 
average results are reported. The codes used in this study are 
modified from [3].  

 

B. Simulation scenes design 

We consider two scenarios with respect to different demand 
patterns: random demand and first-mile (FM) demand (Fig. 6). 
The random demand is generated by randomly selecting fifteen 
OD pairs and each OD pair is assigned a flow proportion 
uniformly ranging from 0 to 1. It represents a uniformly 
distributed demand pattern. The FM demand is generated by 
setting a fixed destination in the center of the map (i.e., a 
subway station) and randomly selecting fifteen origins. Each 
OD pair is assigned the same flow proportion (i.e., 1/15). Note 
that the FM demand is considered because AMoD is considered 
to be implemented as a first-mile feeding service to public 
transit [16], [17]. 

These two demand patterns used in this study are shown in 
Fig. 7. Obviously, FM demand has a larger imbalance between 
demand and supply because vehicles are easily centered to the 
destination area (see Fig. 7). Therefore, passengers in FM 
demand scenarios may have a higher waiting time, and we 
expect the control strategy works more effectively in the FM 
demand pattern. 

 
 
Fig.7: Demand patterns. (Left: FM demand. Right: Random 

demand) 
 

C. Results 

Fig. 8 shows the results of the training process for the FM 
scenario. The average rewards become stable after around 100 
episodes (irregular ups and downs are due to randomness in 
training), showing that the DQN control strategy has 
converged. The converged reward is greater than 0. Since the 
reward is defined as the difference in waiting time (see Eq 4), 
we conclude that the DQN has learned better control strategies 
than the no-rebalance bassline. 

 
Tab. 1 compares the performance of the rebalancing methods 

(DQN vs. No rebalance) under two demand patterns. Besides 
waiting time, we also report the service rate (i.e., the proportion 
of passengers being served) and rebalance distance (i.e., the 
travel distance of AVs for rebalancing purposes). For the FM 
demand scenario, compared to no-rebalance, the DQN can 
reduce the waiting time from 6.87 minutes to 6.16 minutes (-
10.33%). For the random demand scenario, rebalancing can 
reduce the waiting time from 5.77 minutes to 5.37 minutes (-
6.9%). Both of the scenarios show that the proposed DQN 
rebalancing strategies can effectively reduce passenger waiting 
time. It is worth noting that, due to the reduction in passenger 
waiting time, we also improve the service rate of the system, 
which implies that more passengers are served with rebalancing 
strategies given the limited supply. However, the system 
improvement also brings higher rebalance travel distance 
because vehicles need to travel more to pick up passengers.  
 
 

 
                                    

Fig. 6 case study region. 

 
Fig. 8 training process 
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Tab. 1 results comparison 

Demand 

pattern 
Rebalance 

Avg 

waiting 

time (min) 

Service 

rate (%) 

Rebalance 

distance (km) 

First- 
mile 

DQN 6.16 (0.24) 53.8 (1.4) 8.93 (1.4) 

No-
rebalance 6.87 (0.01) 53.4 (0.0) 0 (0) 

Random 
DQN 5.37 (0.19) 57.4 (0.7) 7.36 (1.4) 

No-
rebalance 5.77 (0.01) 56.8 (0.0) 0 (0) 

(The numbers in brackets represent standard deviation across different 
experiment replications). 
 

V. CONCLUSION AND FUTURE RESEARCH 
This paper develops a reinforcement learning-based 

rebalancing strategy in order to minimize passengers’ waiting 
time in an AMoD system. We use the city of Cambridge in 
Massachusetts as a case study. Results show that, with the 
rebalancing using a deep Q network, passengers’ waiting time 
can be reduced, the waiting time reduction is more significant 
when the demand and supply show higher imbalance (such as 
the first-mile demand). 

Future research can be conducted in the following directions: 
1) Due to lack of data, this study does not have real-world 
demand information. Future studies can test the model using 
actual demand and supply scenarios to enrich the results. The 
actual demand can be estimated from models using license plate 
recognition data [18], [19]. 2) As there are many vehicles in the 
system, future studies may consider using multi-agent 
reinforcement learning to discover potential cooperative 
behavior among different vehicles. 3) The DQN can be 
compared with other control strategies, such as simulation-
based optimization [20]. 4) This study only focuses on reducing 
waiting time. Future studies can test the model performance in 
different metrics, such as maximizing social welfare or total 
profit. 
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