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Abstract—As a key part of modern industrial 

machinery, there has been a lot of fault diagnosis methods 

for gearbox. However, traditional fault diagnosis methods 

suffer from dependence on prior knowledge. This paper 

proposed an end-to-end method based on convolutional 

neural network (CNN), Bidirectional gated recurrent unit 

(BiGRU), and Attention Mechanism. Among them, the 

application of BiGRU not only made perfect use of the time 

sequence of signal, but also saved computing resources 

more than the same type of networks because of the low 

amount of calculation. In order to verify the effectiveness 

and generalization performance of the proposed method, 

experiments are carried out on two datasets, and the 

accuracy is calculated by the ten-fold crossvalidation. 

Compared with the existing fault diagnosis methods, the 

experimental results show that the proposed model has 

higher accuracy. 
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I. INTRODUCTION 
EABOX is an important part of modern mechanical 
equipment and which has been widely used in various 

industrial fields. Because of the harsh working conditions, it 
often breaks down at work. When it happens, there always will 
be inestimable consequences. Considering the safety and 
efficiency of industrial operation, it is quite urgent to develope 
the fault diagnosis method of gearbox. 
With the development of modern industry to large-scale and 
complex, the traditional fault diagnosis method is no longer 
applicable. The signal processing based method, such as Short 
Time Fourier Analysis [1] and Empirical Mode Decomposition 
[2], has been difficult to adapt to the complex and large-scale 
industrial data [3]-[4]. The machine learning based method, 
like support vector machine (SVM) with 8 wavelet packet 
energy features in [5] and Trace ratio-linear discriminant 

 

analysis (TR-LDA) proposed by Jin in [6], still can not reach 
the ideal accuracy. More importantly, both of them rely heavily 
on prior knowledge to realize feature extraction which 
seriously reduces the efficiency of fault diagnosis. 

Therefore, the method based deep learning has become the 
focus of scholars' research [7]–[8]. Shao et al. [9] proposed a 
Pre-trained model to realize highly-accurate machine fault 
diagnosis through transfer learning. Wang et al. [10] used 
synchronous extraction transform (SET) to transform the 
vibration signal into time-frequency representation (TFR) to 
enhance the robustness of its feature representation, and then 
trained the data in the deep reinforcement learning (DRL) 
framework. CNN, as a classic deep learning method, has been 
widely used in the field of fault diagnosis. Jing et al. [11] 
applied CNN to the fault diagnosis of gearbox. Then, it has also 
been improved by many scholars. Azamfar et al. [12] stacked 
one-dimensional signal data row by row to generate 
two-dimensional matrix as the input of two-dimensional CNN. 
Wang et al. [13] proposed a model combining particle swarm 
optimization and CNN to confirm CNN parameters accurately 
and automatically. 

Although CNN has excellent local feature extraction ability, 
it can not take advantage of the time sequence of signal data. 
Consequently, Long Short-Term Memory (LSTM) has been 
attempted by a lot of researchers in the industrial area [14]-[21]. 
LSTM is an improved algorithm based on Recurrent Neural 
Network, which can take the output of the previous time as the 
input of this time. The improvement of LSTM is to add three 
gates, input gate, forget gate, and output gate to control the 
influence of previous input. But, it's not enough to be able to 
contact the previous data. In [22], a Bidirectional Long 
Short-Term Memory (BiLSTM) method was used for fault 
diagnosis of aircraft actuators. Its neurons can receive not only 
the data of the last moment, but also the data of the next 
moment. In [23], Cho coupled the input gate and forget gate of 
LSTM to update gate, and replaced the output gate with reset 
gate to obtain a Gated recurrent unit (GRU) model. It has also 
been used in the field of fault diagnosis. Zhao et al. [24] 
combined handcrafted feature design and automatic feature 

A CNN-ABiGRU method for Gearbox Fault 
Diagnosis 

Xiaoyang Zheng1, Zeyu Ye2, Jinliang Wu3, 
School of Artificial Intelligence, Chongqing University of Technology, 

Chongqing, 400000 
China 

 
 

Received: June 25, 2021. Revised: December 8, 2021. Accepted: January 11, 2022. Published: January 13, 2022.  

 

G 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2022.16.54 Volume 16, 2022

E-ISSN: 1998-4464 440



learning to create a local feature-based gated recurrent unit 
network (LFGRU) for machine health monitoring. Compared 
with LSTM, GRU can save more computing resources and 
achieve the same effect. 

In recent years, Attention Mechanism has been successfully 
used in the field of deep learning. It can get more key and 
effective features by establishing the dependency between 
output and input. There are plenty of scholars have combined 
Attention Mechanism with existing methods such as AdaBoost 
[25], Residual Network [26], and CNN [27] to improve them. 

Inspired by the above methods, a CNN-ABiGRU method 
combining the advantages of CNN, BiGRU, and Attention 
Mechanism is proposed in this paper. The main contributions of 
this paper are summarized below: 
1) A novel fault diagnosis method for gearbox combining the 

advantages of CNN, BiGRU, and Attention Mechanism.  
2) The propesed model can directly take the original signal as 

input without prior knowledge. 
3) The use of GRU reduces the consumption of computing 

resources. 
The remainder of this paper is organized as follows. The 

detailed introduction of the model is in Section 2. The 
comparative experiments with existing methods are 
demonstrated in Scetion 3. The final conclusion is in Scetion 4. 

II. METHODOLOGY 
In order to extract more accurate and effective features, we 

propose a model based on CNN, BiGRU, and Attention 
Mechanism. As shown in Fig. 2, the proposed model consists of 
five parts: 
1) The input layer: receive the original signal. 
2) The Convolution layer: extract local features. 
3) The BiGRU layer: extract high-level features. 
4) The Attention layer: remove redundant features and retain 

key information. 
5) The ouput layer: realize classification and output results. 
among them, the CNN layer, the BiGRU layer, and the 
Attention layer will be described in detail in this section. 

A. The Convolution layer  

CNN is a typical feedforward neural network. It has made 
remarkable achievements in the fields of image and speech 
because of its strong nonlinear feature extraction ability. 
Convolution layer is the most important layer in CNN, which 
can generate feature map by convolution of filter composed of 
weights [28]. The output feature map 

jc  of one-dimensional 

convolution for this model can be calculated as follows: 
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where f  is activation function, ix is the ith input map, 
ijk is 

the convolution kernel between the ith input map and the jth 
output map, 

jb  is the bias of the jth output feature map, M  is 

the number of the input maps, N is the number of the output 
maps. The size of the output feature maps S  can be calculated 

as follows: 

 1input ks s
S

step


   (2) 

where 
inputs  is the size of the input map, ks  is the size of the 

convolution kernel, step  is convolution kernel step size. 
Finally, there will be N  output feature maps of size S , which 
are extracted from the input maps by the convolution layer. 

B. The BiGRU layer  

GRU is a simplified model based on BiLSTM. BiLTSM has 
a strong long dependence capability, which can extract 
high-level features from time series data. Therefore GRU not 
only inherits the advantages of BiLSTM, but also has less 
calculation. 
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Figure 1. The structure of GRU 

 
As shown in the Fig. 1, GRU contains two types of gates: an 

update gate and a reset gate. The update gate is used to control 
the influence of the hidden state at previous time on the hidden 
state at this time. The calculation of the update gate tu  at time 
t  is as follows: 

   1,t u t t uu W h x b     (3) 

where   is activation function, uW  is the weight matrix of 

the update gate, ub  is the bias of the update gate, 1th   is the 
output of the previous hidden layer. The more information the 
previous hidden layer retains, the larger the update gate, and the 
greater the impact on the output of the current hidden layer as in 
(5). The reset gate is used to control the degree of ignoring the 
hidden state information at previous time. The calculation of 
the reset gate tr  at time t  is as follows: 

   1,t r t t rr W h x b     (4) 

where   is activation function, rW  is the weight matrix of 

the reset gate, rb  is the bias of the reset gate, 1th   is the output 
of the previous hidden layer. The smaller the reset gate, the less 
information of the previous hidden layer will be retained, and 
the more will be ignored as in (6). The hidden state th  and the 
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Figure 2. The structure of the proposed model 

 
candidate hidden state 

th  at time t  can be calculated as follow 

   11 tt t t th u h u h      (5) 

   1tanh ,t t t th h
h W r h x b     (6) 

where tanh  is activation function, 
h

W  is the weight matrix, 

1th   is the output of the previous hidden layer, tx  is the input 
at time t . 

GRU can only contact the status information of the previous 
moment, which limits its ability to extract more accurate 
high-level features. BiGRU can both obtain the the state 
information of the previous moment and the next moment. 
Therefore, BiGRU is used in this paper. BiGRU consists of a 
forward GRU unit and a backward GRU unit. 

As shown in Fig. 3, the hidden state can be divided into 
forward hidden state 

th  and backward hidden state
th . They  

1x 2x 3x 4x nx
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Figure 3. The structure of BiGRU 
 

can be computed as follows: 

  1,t t th GRU x h   (7) 

  1,t t th GRU x h   (8) 

where GRU  is GRU computation. The final output of 
BiGRU is as follows: 
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 ,t t th h h     (9) 

C. The Attention layer 

Attention Mechanism is a model inspired by human brain 
attention and derived from Encoder-Decoder model. 
Encoder-Decoder is a model for mapping one variable length 
sequence to another variable length sequence. The starting 
point of Attention Mechanism is to expect that there is a 
screening mechanism in the mapping process of two sequences, 
which can keep more important information and filter out less 
important information. 
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Figure 4. The structure of Attention Mechanism 

 
The structure of Attention Mechanism is presented in Fig. 4. 

Its calculation is as follows: 
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where th  is the output of BiGRU, Tu  and W  are weight 

matrix, te  is correlation degree, t  is attention weight 
obtained by normalizing the correlation degree. The screening 
function of Attention Mechanism is realized by weighted 
summation of attention weight and imput feature. For the 
output at this time, the more important the input feature is, the 
greater the attention weight is, and the heavier the proportion in 
the final output. 

III. EXPERIMENT 
In this section, the effectiveness of the proposed model is 

verified. Since the gearbox is composed of a gear and a bearing, 
a gearbox dataset [9] and a bearing dataset is used in the 
comparative experiment. In order to make the experimental 
results more objective, the ten-fold cross validation evaluation 
are used in each group of experiments. 

A. Gearbox dataset 

The gearbox dataset is from Southeast University, China. 
These data are collected from Drivetrain Dynamic Simulator 
(DDS). DDS consists of brake dvice, motor, two-stage parallel 
gearbox, two-stage planetary gearbox, motor controller, and 
brake controller. 

There are seven vibrating 608A11 sensors in the surface of 
DDS test-bed to collect the vibration signal. Their frequency 
range, measuring range and accuracy are 0.5 Hz, 50 g, and 100 
mV/g. Three of these sensors received the vibration signals of 
planetary gearbox in x, y, z three directions, other three of them 
received the three direction signals of gearbox, and the last of 
them was used for measurement of drive motor. 

 
Table 1. The fault type of gearbox dataset 

Component Type Description 

Bearing 

Health Bearing is in health condition 
Ball Crack occurs in the ball 

Combo Crack occurs in inner and outer ring 
Inner Crack occurs in inner ring 
Outer Crack occurs in outer ring 

Gear 

Health Gear is in health condition 
Chipped Crack occurs in the feet 

Miss One of feet is missed 
Root Crack occurs in the root of feet 

surface Wear occurs in the surface 
 

The gearbox dataset contains vibration signals of gear and 
bearing. As listed in Table 1, each of them consists of four fault 
states and one normal state. All of these data are collected under 
two conditions of speed and load configuration of 20 Hz-0V 
and 30 Hz-2V. 

 
Figure 5. Signal examples of various states of gearbox 

 
In the Fig. 5, 1200 data points are randomly selected from the 

original vibration signals of gear and bearing in each state as 
data samples. There are totally 10,000 samples under each 
conditions for both gear and bearing. Each state consists of 
2,000 samples, of which 1,800 are for traning and 200 are for 
testing. 

 
 
 
 
 

Table 2. The experimental results of gearbox dataset 
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Fault Diagnosis 

Method 

Bearing  Gear 

20-0 30-2 20-0 30-2 

BiGRU[24] 93.00% 93.60% 93.80% 90.70% 

LFGRU[24] 93.20% 94.00% 94.80% 95.80% 

Pre-trained model [9] 99.94% 99.42% 99.64% 99.02% 

SET+CNN[10] 99.82% 99.80% 99.21% 99.92% 

 TFR+DRL[10] 100% 100% 99.94% 99.92% 

The proposed model 100% 100% 99.97% 99.94% 

 

 
Figure 6. Confusion matrix of experimental results 

 
To prove the superiority of the proposed model, the 

experimental results are compared with BIGRU, LFGRU, 
Pre-trained model, the model based on SET and CNN, and the 
model based on TFR and DRL. As listed in Table 2 comparison 
results show that the proposed model is more accurate than 
other fault diagnosis methods based on deep learning. Even 
though the model based on TFR and DRL is as good as the 
proposed model in bearing data set, it still lags 0.03\% and 
0.02\% in gear data set. As shown in Fig. 6, there are more 
details of the experimental results. The confusion matrix of 
experimental results further verified that the proposed model 
can achieve high-precision fault diagnosis. 

A. Bearing dataset 

In order to further verify the effectiveness of the proposed 
model and prove that this model has generalization 
performance, anothoer experiment will be carried out on a 
public data set from Case Western Reserve University 
(CWRU). 

 
Figure 7. The bearing test rig of CWRU 

 
As shown in Fig. 7, the test rig consists of an induction 

motor, a troque transducer/encoder, a dynamometer and control 
electronics. There are four different motor loads (0, 1, 2, and 3 
HP) while collecting the bearing dataset. Each one of them 
contains three fault types, outer-race fault (OF), inner-race fault 
(IF), and ball fault (BF). Each fault type is created by the 
Electrical Discharge Machining and set to three severity levels 
7, 14, and 21 mils, respectively. Therefore 9 fault types and 1 
normal condition (NC) are setting in every motor load. As 
shown in Fig. 8, 2048 continuous data points are selected from 
each bearing state as data samples. 

There are 10,000 data samples for each state of bearing, of 
which 9,000 are used for trainning and 1,000 are used for 
testing. 

The proposed model is compared with SVM, TR-LDA, 
BiGRU, BiLSTM, and CNN. As listed in Table 3, CNN, 
BiGRU, and BiLSTM all have working conditions with 
excellent accuracy. Even so, the accuracy of the proposed 
model is still 11.85\%, 2.8\%, 1.55\%, and 1.4\% higher than 
that of them. 

 

 
Figure 8. Signal examples of various states of bearing 

 
Table 3. The experimental results of bearing dataset 

Fault Diagnosis 

Method 

Bearing Dataset 

0HP 1HP 2HP 3HP 

SVM[5] 88.90% - - - 

TR-LDA[6]    92.50% 

CNN 88.10% 90.40% 87.10% 83.50% 

BiGRU 82.95% 96.25% 95.05% 95.15% 
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Fault Diagnosis 

Method 

Bearing Dataset 

0HP 1HP 2HP 3HP 

BiLSTM 86.50% 94.40% 97.70% 97.65% 
The proposed 

model 99.95% 99.05% 99.25% 99.05% 

 

IV. CONCLUSION 
In order to improve the reliability and safety of modern 

industrial machinery, a fault diagnosis method of gearbox 
Based on CNN, BiGRU, and Attention Mechanism is proposed 
in this paper. To prove the effectiveness and generalization 
performance of the proposed model, experiments will be 
conducted on two different datasets. Experimental results show 
that the proposed model can take the original signal as input and 
extract more accurate features than the existing fault diagnosis 
methods. In the real working environment, the signal is often 
accompanied by noise. In the future work, developing an 
efficient fault diagnosis method that can resist noise will be the 
key research direction. 
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