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Abstract- Removing undesired reflection from
a single image is in demand for computational
photography. Reflection removal methods are
gradually effective because of the fast develop-
ment of deep neural networks. However, cur-
rent results of reflection removal methods usually
leave salient reflection residues due to the chal-
lenge of recognizing diverse reflection patterns.
In this paper, we present a one-stage reflection
removal framework with an end-to-end manner
that considers both low-level information corre-
lation and efficient feature separation. Our ap-
proach employs the criss-cross attention mech-
anism to extract low-level features and to effi-
ciently enhance contextual correlation. To thor-
oughly remove reflection residues in the back-
ground image, we punish the similar texture fea-
ture by contrasting the parallel feature separa-
tion networks, and thus unrelated textures in the
background image could be progressively sepa-
rated during model training. Experiments on
both real-world and synthetic datasets manifest
our approach can reach the state-of-the-art effect
quantitatively and qualitatively.

Keywords- Reflection removal, Computational
photography, Deep learning, Image restoration.

I. Introduction

Reflection is a common phenomenon in daily photog-
raphy, especially when capturing images through trans-
parent mediums like glass. The background object may
be shielded, blurred or overexposed by undesired reflec-
tion. Methods for reflection removal can be applied in
many fields, including intelligent vision systems, traffic
recording cameras, and so on. As the popularity of vi-
sion devices in daily life, the degraded image might make
most vision systems inoperable. Hence, practical reflec-
tion removal approaches are extremely in demand.

Main challenge in reflection removal stems from ac-
curately recognizing reflection constituents of the de-
graded image. Traditionally, reflection-contaminated im-
age I is mixed with linearly weighted background B and
reflection image R. Hereby the reflection removal task
could be transferred into an image decomposition task.
Generally, the definition of reflection degradation is as

follows[1-3]: I = α ·B + β · (K⊗R) + n, (1)

where K means the Gaussian blur kernel, ⊗ represents
the convolution operation, α and β denote the proportion
of background and reflection contributes, and n is the
noise item.

Traditional solutions for reflection removal are mostly
based on computational priors. One usual method is to
predict the background edge firstly[6-8], and then con-
trasts the predicted background edge and contaminated-
image to obtain reflection-free background through it-
erations. However, the limitation is obvious that it’s
challenging to predict accurate background edge with-
out enough prior knowledge, which might cause many
background texture details lost. Even if some recent
user-assisted methods restrict this case[6, 9], the pro-
cess of reflection removal becomes less practical in most
scenarios as well.

Recently, the reflection removal task is in focus again
thanks to the fast development of deep learning. Genera-
tive adversarial network[10], variation auto-encoder[11],
and other models have already made headway so that the
visual quality of image synthesis has been significantly
elevated. In the beginning, plain convolution neural net-
works(CNNs) are used to obtain effective features[12] or
predict background edge[13]. However, these multi-stage
methods still follow traditional steps to remove reflec-
tion, so there are many distinct reflection residues can
be seen from the restoration results. Another line of re-
flection removal is often in an end-to-end manner, which
mainly includes two types. One is based on coarse-to-fine
framework to first generate coarse reflection and back-
ground image to facilitate the predicted background[3,
14]. However, it often lets CNN models automatically
learn potential contrast cues of background and reflec-
tion images without explicit instruction, as well as a huge
scale of computation requires more inference time. The
other attempts to generate background image directly
by asking for extra misaligned images[5] or designing ex-
tra models to simulate the formation process of reflec-
tion[15] for training more degenerated images. As illus-
trated in Figure 1, we set an example to display restora-
tion results of various types of state-of-the-art reflection
removal methods on the real-world contaminated-image,
which reveals present methods’ weakness of background
texture preservation and reflection patterns recognizing.
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Fig. 1: An intuitive comparison of restoration results from various methods on a real-world reflection-contaminated
photograph. Specifically, Computational priors based YW19[4] loses more vein details like the area of grass in the
photograph. Without direct instruction from reflection image, multi-stage method BDN[3] causes more undesired
artifacts. Even though ERRNet[5] has good preservation of background information, obvious reflection residues are
left.

In this paper, we propose an end-to-end reflection
removal framework, which sufficiently integrates multi-
level contextual features and employs predicted reflec-
tion image as crucial contrast cues. We respectively pro-
pose Contextual Supplement Network(CSN), Restora-
tion Backbone Network (RBN), and Feature Separation
Network (FSN) as main components. The CSN strength-
ens feature pixel correlations from object edges and sup-
plements more low-level cues. The RBN is designed
to integrate multi-level contextual features for the fi-
nal separation process. Afterward, parallel FSNs utilize
separated features and feature contrast cues to measure
global texture similarity between predicted background
and reflection layer. Thus, the FSNs can effectively guide
the output background image for removing various re-
flection patterns. Overall contribution of our research
summarizes as below:

• We propose an end-to-end framework for single im-
age reflection removal. The framework includes
three efficient functional components and effective
multi-level feature fusion for improving the perfor-
mance of reflection removal.

• We especially reinforce feature extraction and sep-
aration process to sufficiently take advantage of
multi-level semantic information’s correlation and
difference as critical cues to remove reflection.

• We carefully design texture discrepancy loss to more
thoroughly exclude undesired constituents in the
background or reflection layer by punishing similar
texture of global features.

• Extensive experiments demonstrate the superiority
of our framework. Both quantitative and qualitative
results in real-world and synthetic datasets show our
method achieves state-of-the-art performance.

II. Related Work

Multiple-view methods. Reflection removal is an
extremely ill-posed problem, some methods ask for a se-
quence of images in various viewpoints to restrict so-
lution domain. To eliminate reflection in a sequence of
frames, multiview approaches usually regard camera mo-
tion [16-21] as crucial cues by assuming discrepant mo-
tion of the background layer and reflection layer. Meth-

ods[2, 22] estimate optical-flow to align objects in dif-
ferent frames, and thus the model can better separate
reflection and background images.

Non-learning approaches. Practically, most real
scenarios require removing reflection from a single image.
Conventional solutions to restore images with reflection
usually leverages handcrafted priors. Yan et al.[23] lever-
age gradient sparsity prior to predict the background gra-
dient map, and then employ the gradient map again to
facilitate the reconstruction of the background image.
Considering the prior of Depth-of-Field(DoF), Wan et
al.[8] first predict the confidence map of DoF to gener-
ate the gradient map of background image. To more
accurately predict the background image, Levin et al.[6]
require for user-interaction for obtaining reflection re-
gions. Then, Fan et al.[9] improve the performance of
user-interaction based method by respectively preserv-
ing vein and structure. Inspired by Laplacian fidelity
term[25], Arvanitopoulos et al.[24] remove relfection by
penalizing the weak edges. Soon, Yang et al.[4] improve
the target function of reflection modeling and employ
convex optimization to efficiently remove reflection con-
stituents.
Deep learning approaches. With the fast develop-

ment of deep learning[47, 48], the performance of image
reflection removal is significantly improved. Fan et al.[13]
firstly introduced a two-stage deep learning architec-
ture that primarily predicts objective gradient map from
the input image. Next, they utilized both origin input
and predicted gradient map to recover sharp background
layer. Besides, it also proposed an effective method to
synthesize contaminated image from large-scale image
dataset. Thereafter, another two-stage methods is pro-
posed by Yang et al.[3], which adopted step-wise pre-
diction for reflection and background image as well. Li
et al.[26] employed the gradient confidence map to facil-
itate reflection removal and background image synthe-
sis. Then, Wan et al.[27] proposed a novel architec-
ture with two cooperative sub-networks, among which
multi-level information could aggregate interactively ag-
gregated. Considering global various features, Zhang et
al.[28] introduced dilated convolution and perceptual loss
to improve the quality of restored background images.
Later, Wei et al.[5] proposed a novel approach to employ
mis-aligned image pairs for model training. Recently, a
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Fig. 2: Overall framework of our proposed reflection removal method. Main designed components consist of
Contextual Supplement Network(CSN), reflection Restoration Backbone Network(RBN) and Feature Separation
Network(FSN). In criss-cross attention(CCA) module, H and H’ are input and output feature maps, as well as Q,
K and V are extracted feature maps from 1×1 convolution in CCA module.

novel type of methods pays attention to modeling reflec-
tion degradation[15, 29]. Thus, it can generate training
images as close as the real-world images with reflection,
and improves the model robustness and effectiveness.

III. Method

In this section, we would like to introduce the main
framework of our reflection removal method. At first,
we elucidate how our functional components work in
the overall proposed architecture. Then, we enumerate
the loss functions during the training phase. Lastly, we
supplement the specific implementatal details for model
training.

A. Network architecture
As illustrated in Figure 2, our proposed reflection

removal architecture consists of three main compo-
nents, Contextual Supplement Network(CSN), Restora-
tion Backbone Network(RBN), and Feature Separation
Network(FSN).

Contextual Supplement Network. Some re-
searches[8, 13, 14, 27] supplement low-level information
to augment dereflection effect through additional sub-
network or multi-stage architecture, mainly because high
frequency proportion in low-level feature is a reliable
prior for reflection removal. Global pixel-wise correlation
facilitates to restore high quality background images[30],
and thus we employ the criss-cross attention in CSN to
cement global low-level information and pixel-wise corre-
lation. As an efficient evolution of non-local neural net-
work[31], we employ Criss-Cross Attention (CCA) mod-
ule, and its effectiveness has been proved for semantic
segmentation[32]. As illustrated in Figure 2, the input
feature H is mapped into Q, K and V by 1×1 convo-
lutions. The CCA module includes two steps, the affin-
ity and the aggregation. The affinity operation calcu-
lates pixel-wise correlation of all channels between fea-

ture maps Q and K:

di,u = Qu ·Ωi,u, (2)

where Qu denotes a vector of pixels in all channels at
position u in spatial dimension of feature maps Q, Ωi,u

is the i-th element in the vector of position u’s row or col-
umn in spatial feature maps K, and di,u is the calculated
correlation degree. Then attention map A is generated
from di,u via softmax function. Residual feature aggre-
gation operation defines as below:

H ′u =
∑
i∈|Φ|

Ai,uΦi,u +Hu, (3)

where Hu and H ′u note input and output feature map
at position u, Φi,u is feature map vectors in V, and
Ai,u is scalar value of attention map obtained from soft-
max function after di,u. According to CCA module’s pe-
culiarity, long-term contextual information can be well
enriched. However, to gain sufficiently global correla-
tion information, at least two recurrently connected CCA
modules are necessary. Therefore, our CSN component
can aggregate global corresponding between low-level
contextual features. Notably, CCA module is compu-
tationally cheap, so it consumes little resource to deal
with larger feature maps, as well as effectively aggregat-
ing low-level information according to pixel-wise correla-
tion.

Restoration Backbone Network. To obtain re-
flection features from input reflection-contaminated im-
age, we employed a common U-Net[33] as RBN’s ar-
chitecture shown in Figure 2. This subnetwork com-
bines H ′ and I as input to obtain deep separable fea-
tures Fc = f(I,H ′). In main RBN, altogether 16
layers include 3×3 convolution filters, average pooling,
leakyReLU[34] and symmetric skip-connections. More-
over, we achieve upscaling by bilinear interpolation with
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Fig. 3: Main strategies of different reflection separation based reflection removal methods. BDN[3] step-wise
generates reflection and background images from coarse to fine. PLNet[28] simultaneously obtains reflection and
background images. Our method utilizes the mutex relationship of texture between the reflection and background
branches.

3×3 convolution and leakyReLU operations. The batch-
normalization layer ignores absolute difference on image
contrast and generates more undesired artifacts[35], so
we forbid all the batch-norm layers to better suit our
task.

Feature Separation Network. Main strategies of
image decomposing based reflection removal methods are
displayed in Figure 3. The third is the main strategy of
our concurrent Feature Separation Network(FSN). Mo-
tivated by the low efficiency of most methods that use
CNNs to implicitly learn reflection and background fea-
ture. We design the concurrent FSNs which are explicitly
supervised to punish similar texture by feature contrast
cues. Standard low-level feature is extracted from the
shallow layers of pretrained VGG-19[36] to determine
the target boundary. Therefore, we can finally obtain
cleaner low-level features to respectively predict B∗ and
R∗ through parallel FSNs HB and HR:

B∗ = HB(f(I,H ′)),

R∗ = HR(f(I,H ′)).
(4)

Additionally, we adopt residual learning (I − B)[37] so
that our network can reduce the amplitude of variation
to avoid artifacts while testing.

B. Loss function

Content loss. Only employing L1 distance to mea-
sure absolute error between groundtruth BGT and pre-
dicted background image B∗ might cause undesired
artifacts at times. Hence, we introduce perceptual
loss[38] that focuses on differences of multi-level seman-
tic features between predicted background layer and
groundtruth to enhance image details. Multi-level fea-
tures are extracted from five layers of pretrained VGG-
19[36] Fl. The weights of various feature sizes are nor-
malized by coefficients αl. Combined with pixel-wise

loss, more high frequency details can be preserved. Con-
tent loss is defined as follows:

Lcontent = Lpixel + Lfeat, (5)

Lpixel = ||B∗ −BGT ||1, (6)

Lfeat =
∑
l

αl||Fl(B
∗)−Fl(BGT )||1. (7)

Gradient loss. Precise gradient is critical prior for
image restoration[13, 23, 27, 28, 39]. Our gradient loss
is inspired from traditional prior of blurry image edges,
which mainly includes two parts, total variation loss and
exclusion loss. We introduce total variation loss[40] as
regularization item to enhance spatial smoothness of out-
put background and to restrain high-frequency artifacts.
Gradient loss is defined as follows:

Lgrad = Ltv + Lexcl, (8)

Ltv = ||∇xB
∗||22 + ||∇yB

∗||22, (9)

where ∇x and ∇y are image gradients in x and y direc-
tions. Besides, gradient exclusion loss was proved use-
ful for overlap image decomposition tasks, which can
more thoroughly separate overlapped areas based on
edge blurry prior.

Lexcl =
∑
l

N∑
n=1

||Ψ(g↓nB (I, θ), g↓nR (I, θ)||F , (10)

Ψ(B,R) = tanh(λB |∇B|)� tanh(λR|∇R|), (11)

where λT and λR are the normalization factors, g and
n are downsampling operation parameters, and � notes
element-wise multiplication. More details about parame-
ters definition are expatiated in original introduction[28].
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Fig. 4: Visual comparison of the separated background layer and reflection layer with BDN[3] and PLNet[28] on
validation dataset of synthetic images[13]. Our method can restore cleaner and higher quality results from the input
degraded image.

Adversarial loss. In order to preserve more vein
and texture detail, additional supervisor helps much to
improve the visual effect[41]. This can also relieve color
degradation case and make the restoration results more
like the realistic reflection-free images. Definition of ad-
versarial loss is defined as follows:

Ladv = −EB∗vPG
[D(B∗, I)], (12)

LD = −EBGTvPdata
[D(BGT, I)] + EB∗vPG

[D(B∗, I)].
(13)

We employ a similar discriminator proposed by the
pix2pix [41].

Texture contrast loss. To effectively utilize
mutually-exclusive features in parallel FSNs, we contrast
the texture similarity of global features between back-
ground and reflection branches. Following the global tex-
ture extraction in image synthesis task[46], our designed
texture contrast loss function penalizes those global tex-
ture features that exist in both branches at the same time
by performing supervision. We infer locally extracted
features belong to only one layer and output of deep
separable features from RBN are ready to conclude final
predictions. And we employ texture contrast loss to in-
struct the final FSNs to obtain cleaner predictions rather
than simply receive B and R from the last convolution
layer’s six channels as PLNet[28].

Firstly, we protrude global texture feature through
the Gram matrix, and then measure intersection pro-
portion in a contrast manner by cosine similarity. In

detail, we put the groundtruth of B and R into a pre-
trained VGG-19 and then take out 64 channels features
in ‘layer1 2’ to gain metric boundary d1. Analogously, we
calculate the intersection proportion d2 of parallel FSNs
feature. Finally, we minimize the distance of d1 and d2

to restrain similar texture features. Texture contrast loss
formulates as follows:

Ltc =
1

c

N∑
i=1

||Gi(BGT , RGT )− Gi(B∗, R∗)||1, (14)

Gi(B,R) = cos(φ(FB,i), φ(FR,i)), (15)

where φ denotes Gram matrix, cos is cosine similarity,
C is feature channels and additionally Fi = Fi(f(I,H))
notes the i-th channel of RBN’s output feature maps.

To sum up, our final loss function is formulated as:

L = λ1Lcontent + λ2Lgrad + λ3Ladv + λ4Ltc, (16)

where the coefficients of each loss are empirically set as
λ1=1, λ2=λ3=0.01, λ4=0.1.

IV. Experiments

This section shows our experiment results and both
quantitative and qualitative comparisons with recent ad-
vanced reflection removal methods including BDN[3],
PLNet[28], ERRNet[5], and YW19[4]. Among them,
most methods are learning-based and one is the state-of-
the-art non-learning based. Methods are tested on both
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Fig. 5: Visualization of background restoration results from five reflection removal methods on four randomly
selected test images in SIR2 Wild dataset[1]. Our method keeps good fidelity of background information and
removes reflection more thoroughly. Besides, we magnify the areas with more reflections with bounding boxes.

synthetic and real-world datasets to reveal our method’s
superiority. As for synthetic images, we qualitatively
compare the results of image decomposition based meth-
ods, through which both reflection and background lay-
ers are predicted. Next, we compare our method on
four real-world test datasets with various type meth-
ods to display our method practicality in real-life scenes.
Additionally, we adopted PSNR, SSIM, LMSE[42], and
NCC[2] metrics to more thoroughly evaluate different
methods’ results. Among them, higher values for PSNR,
SSIM and NCC and lower LMSE mean higher quality of
predicted background image.

A. Results comparison

Here we would like to show our results and com-
pare them with state-of-the-art methods on both visual
quality and quantitative metrics. For synthetic datasets,
Figure 4 qualitatively shows four randomly selected re-

sults of 100 standard synthetic test images[13]. Com-
pared with recent image decomposition based methods[3,
28], our model decomposes reflection-contaminated in-
put into higher quality of prediction of reflection and
background layers. Obviously, our method leaves fewer
reflection residues on the predicted background layer, as
well as capturing a more precise reflection layer.

To deeply explain our model’s reflection-free effect,
we employ four real-world datasets for evaluation. Spe-
cific visual quality comparison with recent reflection re-
moval methods is shown in Figure 5 and Figure 7. In de-
tail, our method is not merely better for detail fidelity of
the background, but also diminishes reflection residues.
For instance, our method exhibits prominent background
preservation, and creates fewer artifacts on SIR2 Wild
dataset[1] in the second row of Figure 5. Both the pillar
and floor details are preserved better than other state-
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Fig. 6: Visualization of restoration results from four variants of our method in ablation experiments on a randomly
selected real-world test image.

Table 1: Performance of different methods for image re-
flection removal on four real-world test datasets in terms
of PSNR, SSIM, LMSE and NCC. Note that best results
are red boldly and the second best are blue boldly.

Dataset Metrics YW19[4] BDN[3] PLNet[28] ERRNet[5] Ours

Real20

PSNR 17.99 18.97 21.91 22.68 22.84
SSIM 0.642 0.740 0.787 0.798 0.798
NCC 0.758 0.794 0.896 0.877 0.867

LMSE 0.027 0.032 0.021 0.022 0.022

Solid

PSNR 20.39 22.73 22.63 24.69 24.92
SSIM 0.817 0.853 0.874 0.891 0.886
NCC 0.953 0.978 0.963 0.982 0.979

LMSE 0.007 0.005 0.006 0.005 0.004

Postcard

PSNR 20.04 20.71 16.82 21.85 21.60
SSIM 0.791 0.856 0.797 0.878 0.876
NCC 0.846 0.913 0.884 0.880 0.917

LMSE 0.008 0.007 0.007 0.005 0.006

Wild

PSNR 21.39 22.34 21.50 24.45 24.80
SSIM 0.822 0.821 0.829 0.859 0.879
NCC 0.798 0.794 0.896 0.904 0.927

LMSE 0.009 0.007 0.008 0.006 0.006

of-the-art methods of the first column. In fact, the de-
composition based method PLNet[28] is outstanding for
reflection removal. PLNet[28] transforms picture tone
leading many image color saturation changes. Moreover,
YW19[4] also appears the problem of global pixel trans-
formation of the input image. Compared with learn-
ing based methods, some high-frequency details of back-
ground might be lost or blurred. Next, to show our
model’s generalization performance, Figure 7 displays
visual results of other existing real-world images with
reflection[4, 13, 28]. Our method can restore interfered
images to high-quality background images. Interestingly,
our model can recognize the glass edge in the third row
of Figure 7 and preserve it, rather than remove it like
ERRNet[5]. It also implies our method can more accu-
rately capture reflection regions and preserve background
details.

Table 1 shows a quantitative comparison between
state-of-the-art methods on the existing real-world test
datasets in terms of four evaluation metrics. The quanti-
tative results prove our method can be comparable with
the most state-of-the-art results for image reflection re-
moval. In terms of PSNR, our method achieves 0.35 dB
higher than competing methods on Wild dataset. Table
2 also displays that our method is of great efficiency while

Table 2: Comparison of model efficiency of different
methods from the number of trainable parameters and
inference time. Note that all input images are tested
with the resolution of 256×256 on a same GPU.

Method Trainable params Inference time

ERRNet[5] 45.4M 0.074s
BDN[3] 75.2M 0.066s

Ours 5.06M 0.012s

inferring. However, we are willing to acknowledge that
relatively uncommon scenes of SIR2 postcard dataset are
still challenging and have more progress space to enhance
performance.

B. Training dataset

Following the synthesis method proposed by
PLNet[28], we generated 7000 synthetic triplets
{It, Bt, Rt}Nt by synthesizing images from the PASCAL
VOC dataset[43] for model training. In addition, we
supplemented real-world training images proposed by
PLNet[28], and cropped the real-world images into 3000
training pairs. Finally, we obtained 10000 image pairs
as training dataset.

To evaluate different methods effectively, we utilized
four real-world test datasets. The SIR2[1] is a collection
of images for reflection removal, which can be divided
into three datasets: (1) 200 images captured in indoor
scenes with solid objects. (2) 199 challenging triplets
that are captured from overlapped postcards. (3) 55
wild scenes in daily life reflection condition. For com-
parison, three datasets are respectively named as Solid,
Postcard, and Wild. Besides, we name the 20 real-world
test images in PLNet[28] as Real20.

C. Implemental details

We implement our experiments through PyTorch.
The image scale is randomly cropped into 256×256. Be-
sides, training images employ flipping and random re-
sizing for augmentation. Afterward, synthetic and real-
world datasets are loaded with adjustable proportion to
avoid over-fitting. Our adjustable learning rate changes
from 2e-4 to 1e-5 along with training epochs. We adopt
Adam[44] optimizer, batchsize 4, and altogether 120
epochs were trained from scratch using weight initial-
izing method[45]. All experiments are implemented with
4 Titan RTX GPUs on distributed mode.
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Fig. 7: Visualization of restoration results on five randomly selected images from real-world test datasets. We
compare our method with state-of-the-art results of decomposition based methods BDN[3] and PLNet[28], as well
as non-decomposition based method ERRNet[5]. Our method obtains higher quality background images.

D. Ablation study

To further explore the actual effect of the loss func-
tion and network component, we perform a series of abla-
tion study experiments. Compared components are three
subnets of CSN, RBN, and FSN. As quantitative results
displayed in Table 3, it’s obvious to conclude that the
complete model performs best.

Qualitative evaluations of restoration results from our
model’s variants in Figure 6 demonstrate specific reflec-
tion removal effects by a random selected real-world im-
age. The initial parameters of each experiment are the

Table 3: Quantitative performance of four ablation vari-
ants of our method on both synthetic dataset and real-
world Wild dataset in terms of PSNR and SSIM. Note
that RBN-only and w/o FSN forbid Ltc while training.

Dataset Metrics RBN-only w/o FSN w/o CSN Complete

Real20[28]
PSNR 19.97 21.09 22.06 22.84
SSIM 0.750 0.769 0.787 0.798

Synthesis[13]
PSNR 22.73 23.22 24.17 24.80
SSIM 0.843 0.860 0.866 0.879
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same. The increasingly better visual and quantitative
results in ablation study can demonstrate that the pro-
posed framework and the loss function are of crucial ef-
fectiveness to deal with reflection removal task.

V. Conclusion

In this paper, we present an end-to-end framework
to restore reflection-contaminated images. Inspired by
conventional solutions, we design three functional com-
ponents of CSN, RBN and FSN respectively to effi-
ciently utilize multi-level information. To thoroughly
exclude reflection residues, we propose texture contrast
loss to measure texture intersection proportion between
branches. Extensive experiments demonstrate that our
proposed framework can effectively work on both syn-
thetic and real-world datasets.
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