Performance Improvement of Aperture Coupled MSA through Si Micromachining

Brijesh Kumar Soni 1,2, Kamaljeet Singh 1, Amit Rathi 2,*, Sandeep Sancheti 3
1 U R Rao Satellite Centre, Bengaluru, India
2 Manipal University Jaipur, Jaipur, India
3 Marwadi University, Rajkot, India
Corresponding Author*- amitrathi1978@gmail.com

Received: November 23, 2020. Revised: June 12, 2021. Accepted: July 15, 2021.

Abstract — In recent times rectangular patch antenna design has become the most innovative and popular subject due to its advantages, such as being lightweight, conformal, ease to fabricate, low cost and small size. In this paper design of aperture coupled microstrip patch antenna (MSA) on high index semiconductor material coupled with micromachining technique for performance enhancement is discussed. The performance in terms of return loss bandwidth, gain, cross-polarization and antenna efficiency is compared with standard aperture coupled antenna. Micromachining underneath of the patch helps in to reduce the effective dielectric constant, which is desirable for the radiation characteristics of the patch antenna. Improvement 36 percent and 18 percent in return loss bandwidth and gain respectively achieved using micromachined aperture coupled feed patch, which is due to the reduction in losses, suppression of surface waves and substrate modes. In this article along with design, fabrication aspects on Si substrate using MEMS process also discussed. Presented antenna design is proposed antenna can be useful in smart antenna arrays suitable in satellite, radar communication applications. Two topologies at X-band are fabricated and comparison between aperture coupled and micromachined aperture coupled are presented.

Index Terms—Microstrip Patch Antenna, Aperture Coupled, Micromachining, High Resistivity Silicon

I. INTRODUCTION

With the advancement of the Radio Frequency Integrated Circuits (RFIC) technology, the realization of a high-frequency integrated system on a monolithic substrate is possible. The main building block of RFIC is silicon semiconductor material, which can be used for both MEMS as well as RFIC technology. The main advantages with systems fabricated using RFIC technology are improved systems performance and cost advantage. Successful heritage has been established for high frequency and speed analog and digital circuits for example Low Noise Amplifier (LNA), Power Amplifiers (PA), Synthesizers and Oscillators, etc fabricated using RFIC technology, which revolutionized the total communication system. These circuits such as are the main building block of the communication system.

Microstrip antenna technology has enormous attractive features [1-4] such as lightweight, conformal design, easy to fabricate lower cost and compact size. The main design requirement of the microstrip antenna is to maximize radiation efficiency and bandwidth, requiring patch and feed network be printing on low and high dielectric constant material respectively.

Fig. 1 Aperture coupled Microstrip patch antenna

Microstrip feed is the simplest one but due to spurious radiation, it limits bandwidth and leads to poor cross-polarization. Spurious radiation can be minimized by the selection of aperture coupled feed [5]. With aperture
coupled feed, field is coupled through a slot in the ground plane and the feed is separated with a patch through the ground plane. The geometry of the aperture coupled patch antenna is illustrated in figure 1. This type of feed has the advantage of, no physical contact between the feed and radiating patch and independent optimization of antennas and feed network. Aperture coupled patch has wider bandwidth and improved isolation between antennas and the feed network.

Microstrip antenna fabricated using RFIC technology [6] can easily be integrated with front-end circuitry. However integrated system performance is limited due to the fabrication of patch on Si material which is having low resistivity and high dielectric constant. Crosstalk and Poor electric insulation between active and passive circuits are caused by low resistivity. Another limiting parameter is surface wave loss. These surface wave losses result in a narrow bandwidth, degraded radiation pattern and poor radiation efficiency. Surface wave losses can be minimized by selectively etching out material underneath of the patch, which in turn synthesizes the patch as low dielectric constant material. The process of selectively removal of the silicon substrate material underneath the patch antenna is known as micromachining [7]. Normally Bulk micromachining is being used to remove the material. High Resistivity Silicon with deposition of oxide, polyimide layer [8-10] can result in suppression of cross talk and parasitics. Semiconductor with bulk resistivity of more than 1KΩ·cm classified as high resistivity substrate. The equivalent transmission model of the Microstrip line is shown in figure 2. Here the shunt conductance G represents the current induced in the dielectric representing dielectric losses. With a high resistivity substrate, the contribution of conductance is minimal compared with capacitance for dielectric losses. As a result, choosing Si with a high resistivity reduces dielectric losses and improves antenna radiation efficiency. Furthermore, high resistivity silicon wafers have the following promising characteristics: (a) uniform resistivity across the wafer thickness, (b) acceptable radial and axial resistivity gradients, and (c) stable resistivity during device production.

![Fig. 2 Equivalent transmission model of Microstrip line](image)

The present article describes the design of aperture coupled rectangular microstrip patch on silicon substrate coupled with performance improvement by the way of micromachining. Section II describes the design of aperture coupled and micro-machined antenna. The aspects of patch design, simulation, and fabrication, as well as measured findings, are covered in section III-V.

II. THEORY OF APERTURE COUPLED MICRO-MACHINED ANTENNA

The design of an aperture coupled microstrip patch can be done using a variety of analytical and design methodologies, such as transmission lines, cavity models, and so on [11-17]. Width (Wap) and length (Lap) of the slot determines coupling from the feed to the patch. Typically, the slot length to width ratio is 1:10. Wider slots result in back radiation. The length of the tuning stub compensates for the excess reactance of the slot. The stub length is typically slightly less than λg/4.

The Aperture coupled Micro-machined antenna configuration is shown in figure 3.

In this configuration, an air cavity is formed beneath the microstrip patch by the process of micromachining. The process of micromachining causes synthesizing in effective dielectric constant due to mixed substrate region, i.e. air-silicon region. Effective dielectric constant can be predicted in the mixed region using a quasi-static model [11].

![Fig. 3 Aperture coupled Micro-machined Microstrip patch antenna](image)

The effective dielectric constant εreff is estimated from the following expression:

\[\varepsilon_{reff} = \varepsilon_{cavity} \left(\frac{L + 2\Delta L}{\frac{\varepsilon_{fringe}}{\varepsilon_{cavity}}} \right) \]

\[\varepsilon_{fringe} = \frac{\varepsilon_{air} + (\varepsilon_{sub} - \varepsilon_{air})x_{air}}{\varepsilon_{air} + (\varepsilon_{sub} - \varepsilon_{air})x_{fringe}} \]

Where:

\[\varepsilon_{cavity} = \frac{\varepsilon_{air}x_{sub}}{\varepsilon_{air} + (\varepsilon_{sub} - \varepsilon_{air})x_{air}} \]

εcavity and εfringe represents the relative dielectric constant of the mixed substrate region and the fringing field region respectively. ΔL indicates the open end effect. Xfringe and xair are thickness parameters which are the ratio of the air to full substrate thickness in the fringing and mixed field regions, respectively.

A plot between εreff and the xair for the silicon substrate is plotted in figure 4. For xair of 0.44 εreff is 2.

III. PATCH DESIGN AND FABRICATION
The design of the microstrip antenna on Si substrate employing CMOS process is briefed in the article [18]. Aperture coupled patch with and without micromachining is simulated on high resistivity Si substrate. High resistivity silicon substrate having \(\varepsilon_r \) (11.9) with the height (0.675 mm) selected for radiator and RT-Duroid 6010 with the height of 10 mils selected for feed. The design parameters and simulated results have been discussed in the following sections. The simulation setup of both patches is shown in figure 5.

FDTD based CST simulator used for simulation and optimization of patch design [19]. The physical parameter of both designs is tabulated in Table 1. The depth of the micromachined cavity is 0.3 mm in design 2. The synthesized \(\varepsilon_{\text{reff}} \) is 3.6 for the micromachined patch.

![Graph of Effective Dielectric Constant vs Air Gap Thickness](image)

Fig. 4 Relationship between \(\varepsilon_{\text{reff}} \) and \(x_{\text{air}} \)

The simulated return loss plots for designs 1 and 2 are shown in Figure 6.

![Simulated Return Loss Plots](image)

Fig. 6 Return loss (Simulated)

E(CO pol), H(Cross pol) plots for designs 1 and 2 are shown in Figure 7. Design 2 is with aperture coupled micromachined antenna.

![Simulated E CO and H-Cross Pattern](image)

Fig. 7 E CO and H-Cross Pattern (Simulated)

By analyzing figures 6 and 7 the summary is tabulated in table 2, it is evident that aperture coupled micro-machined antenna has 150, 9 and 5 percent more bandwidth, gain and efficiency respectively compared with aperture coupled antenna. Cross polarization performance is poorer due to the 54% wider slot.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Design 1</th>
<th>Design 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resonant Freq.(GHz)</td>
<td>8.17</td>
<td>8.1</td>
</tr>
<tr>
<td>Return Loss BW (MHz)</td>
<td>80</td>
<td>200</td>
</tr>
<tr>
<td>Realized Gain (dB)</td>
<td>5.8</td>
<td>6.1</td>
</tr>
<tr>
<td>Total Efficiency (%)</td>
<td>87</td>
<td>95</td>
</tr>
<tr>
<td>Cross Pol(dB)</td>
<td>40</td>
<td>31</td>
</tr>
<tr>
<td>E Plane 3 dB Beam Width (degree)</td>
<td>91</td>
<td>115</td>
</tr>
</tbody>
</table>

Table 2. Simulated result comparison

For radiator fabrication, a double-sided polished 6" high resistivity Si wafer with a thickness of 0.675 mm was chosen. Si resistivity and dissipation factor (\(\tan \delta \)) are in the 4-10 K Ohm and 0.021 ranges, respectively. A thin insulating layer of SiO2 with a thickness of 5000 Å is placed over silicon to prevent the formation of a metal-semiconductor junction (Schottky Barrier), enhance metal adhesion, and reduce cross-talks in transmission lines.

The patch conductor material should have good adhesion properties to Si/SiO2 and better corrosion resistance, so thick Aluminum (3 µm) metallization using sputtering is used over buffer layer as a patch conductor. The fabrication process steps of the patch are explained in figure 8.
Design 2 involves etching specific material from the backside of the patch using plasma etching, also known as the Deep Reactive Ion Etching (DRIE) method. DRIE is a bulk micromachining method for making steep-sided holes and trenches in wafers and substrates.

Another technique that is being used for micro-machining is wet chemistry (KOH/TMAH) etching. The main difference between both the process is that the former is an isotropic and time-consuming process.

Feed slot printed and etched on RT duroid 6010 substrate with a thickness of 10 mil.

The fabricated patches are shown in Figures 9 and 10.

Henkel's "Able film 5025E" conductive adhesive sheet was used to connect the patch and feed line substrate. Feed launcher SMA connector attached by using normal process of soldering.

IV. EXPERIMENTAL RESULTS

Return loss was measured in the frequency range of 7-9 GHz for both fabricated patches. Figures 11 and 12 show the calculated return loss statistics.

As per the measured results, it is evident that compared with design 1, design 2 which is a micromachined aperture coupled antenna having 36 percent and 18 percent more bandwidth and gain respectively. 3 dB beamwidth is also 40 percent more for design 2. Cross pol for design 2 is poor by 20 percent. It is due to the wider aperture slot area. The trend of the measurement results is having closeness to simulated results.

Designed patches are also compared with few identical references and tabulated in table 4.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Design 1</th>
<th>Design 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centre Freq. (GHz)</td>
<td>8.2</td>
<td>8.08</td>
</tr>
<tr>
<td>RL BW (MHz)</td>
<td>125</td>
<td>170</td>
</tr>
<tr>
<td>Realized Gain (dB)</td>
<td>5</td>
<td>5.9</td>
</tr>
<tr>
<td>E plane 3 dB Beam Width (Degree)</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td>Cross Pol (dB)</td>
<td>25</td>
<td>20</td>
</tr>
</tbody>
</table>

As per the measured results, it is evident that compared with design 1, design 2 which is a micromachined aperture coupled antenna having 36 percent and 18 percent more bandwidth and gain respectively. 3 dB beamwidth is also 40 percent more for design 2. Cross pol for design 2 is poor by 20 percent. It is due to the wider aperture slot area. The trend of the measurement results is having closeness to simulated results.

Designed patches are also compared with few identical references and tabulated in table 4.
Implementation of micromachining in aperture coupled patch helps in, reduction in losses, suppression of surface waves and substrate modes, results in an improvement in space wave radiation. The alignment of the patch and feed substrate is very critical for optimum performance. The possible variation in the measurement result is due to the minor misalignment of the patch with the feed substrate, which was carried out manually.

Comparison of patches are tabulated in table 4, the concept of micro-aching with aperture coupling can be extended to the higher band and multiband [34] of frequencies, where improvement in the percentage bandwidth and radiation characteristics is observed.

<table>
<thead>
<tr>
<th>Patch</th>
<th>94</th>
<th>10</th>
<th>58</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present work (Design 1)</td>
<td>8.2</td>
<td>5</td>
<td>1.5</td>
</tr>
<tr>
<td>Present work (Design 2)</td>
<td>8.08</td>
<td>5.9</td>
<td>2.03</td>
</tr>
</tbody>
</table>

* Simulated

ACKNOWLEDGEMENT

Authors sincerely thank and acknowledge the support provided by the various entities of URSC and SCL. Authors gratefully acknowledge the support of Manipal University Jaipur for providing the CST software for doing the literature work and simulation.

REFERENCES
