
 

Abstract—Electroencephalography (EEG) inverse 

problem is a typical inverse problem, in which the electrical 

activity within the brain is reconstructed based on EEG 

data collected from the scalp electrodes. In this paper, the 

four-layer concentric head model is used for simulation 

firstly, four deep neural network models including a 

multilayer perceptron (MLP) model and three 

convolutional neural networks (CNNs) are adopted to solve 

EEG inverse problem based on equal current dipole (ECD) 

model. In the simulations, 100,000 samples are generated 

randomly, of which 60% are used for network training and 

20% are used for cross-validation. Eventually, the 

generalization performance of the model using the optimal 

function is measured by the errors in the rest 20% testing 

set. The experimental results show that the absolute error, 

relative error, mean positioning error and standard 

deviation of the four models are extremely low. The CNN 

with 6 convolutional layers and 3 pooling layers (CNN-3) is 

the best model. Its absolute error is about 0.015, its relative 

error is about 0.005, and its dipole position error is 

0.040±0.029 cm. Furthermore, we use CNN-3 for source 

localization of the real EEG data in Working Memory. The 

results are in accord with physiological experience. The 

deep neural network method in our study needs fewer 

calculation parameters, takes less time, and has better 

positioning results. 

Keywords—inverse problem, EEG, DNN, source 

localization.  

I. INTRODUCTION 

LECTROENCEPHALOGRAPHY (EEG) inverse problem aims at 

reconstructing the source information of electrical activity 

inside the brain based on the electrical signals measured on the 

scalp, and it is widely used in both clinical diagnosis and 

cognitive function research of brain because of its advantages of 

high speed, safety, and noninvasiveness [1, 2]. The source 

localization is a typical inverse problem. Due to the ill-posed 

and underdetermined character of the problem, EEG inverse 

problem has no unique solution, i.e., a measured electric field 

 

can be explained by infinite numbers of different source 

configurations possibly. Some geometrical and mathematical 

constraints must be added to gain the most reasonable 

solution[3]. Usually, equivalent current dipole (ECD) methods 

and imaging methods are used to describe the activity of the 

brain. We discuss the method to localize the current sources 

within the brain with ECD model in this paper. 

When the electrical activities within small regions of the 

brain are simulated as ECDs, the task of EEG inverse problem is 

to find the optimal parameter estimation (position and polar 

moment) of ECDs [4, 5].The optimization algorithm must be 

used to find the optimal solution. Some local optimization 

algorithm and global optimization methods, such as least square 

method, clustering method, simulated annealing, genetic 

algorithm, etc., are proposed for EEG source localization [6].  

Neural networks, especially the feedforward neural networks, 

have strong abilities to approximate complex nonlinear 

mapping functions [7]. In the early research, shallow neural 

network methods, such as artificial neural network (ANN), the 

combination of wavelet and neural network (WNN), and 

support vector machine (SVM), have been used in the EEG 

source location [8-12]. Shallow neural network could learn the 

intrinsic functional relationship between EEG and brain-source 

generators and extract shallow simple feature information, but 

complex information is difficult to reflect by shallow network. 

The accuracy of its positioning results is significantly lower than 

that of traditional fitting methods [13]. 

Deep neural network (DNN) makes a breakthrough in 

multiple fields in recent years [14]. According to the universal 

approximation theorem, a shallow feedforward network can 

approximate any measurable function, provided the network is 

given enough hidden units. But its layer may be infeasible large 

and may fail to learn correctly. However, the experience of 

predecessors shows that if the number of model parameters 

increases but the network depth doesn't change, the increase of 

improvement will be limited [15]. Further, deeper networks 

need far fewer parameters, and can generalize frequently. 

Therefore, the deep network is more suitable for complex 

function approximation than the shallow model.  

Researchers have applied DNN methods to process 
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biomedical data. For example, EEG signal classification, 

medical image analysis and so on. Many pieces of research 

show that DNNs can deal with the ill-posed inverse problem and 

source localization problem[16-18]. Some studies have shown 

that it is helpful to deal with ill-posed inverse problems [19]. 

And convolutional neural networks were used for ill-posed 

inverse problems in 12-lead ECG[20]. The recursive neural 

network of long short-term memory (LSTM) has also been 

applied to solve process of inverse EEG problems and achieved 

effective results[21]. In the case of noise, it has better robustness 

compared with the traditional dipole fitting method.  

Applying neural networks with the advantages of 

self-learning, associative storage and fast calculations to inverse 

problem solving can build memory during training and correctly 

infer the intrinsic functional relationship between the scalp EEG 

and the endogenous position of the brain, and find the inverse 

solution online. Compared with the shallow network used in 

earlier studies, the DNN is more feasible for representing the 

complex mapping relationship between electrical signals and 

source power activity, and the accuracy of the results is also 

higher. 

In this paper, four DDNs models, including a multilayer 

perceptron (MLP) model and three convolutional neural 

network (CNN) models, are constructed to solve EEG inverse 

problem based on ECD model, and reconstruction results are 

compared and analyzed. To find the best DNN model of 

positioning effect, it is used to locate the source of EEG signal. 

The results illustrate the superior quality of DNN methods in 

EEG source localization. 

II. THE GENERAL FORM OF EEG INVERSE PROBLEM  

Due to the high concentration and sparseness of the brain 

electrical activities, the local source in the brain can be modeled 

as a single current dipole with the parameter ( , )r q , where, 

( , , )x y zr r rr  is the position vector and ( , , )x y zq q qq is the 

moment vector [22]. The relationship between the scalp 

potential u on electrodes m and the dipole source can be 

simplified into a transmission system. If the noise on m potential 

points is N, the relationship between the scalp potential and the 

single dipole source can be expressed as:  

( , )L u r q N  (1) 

where 
1 2

T[ , , , ]
m

u u u u  is the potential distribution on m 

points, and the nonlinear operator L is the transfer function 

reflecting the inherent characteristics of the system depending 

on the conductivity characteristics of the model, the grid 

division, and the electrodes distribution on the measurement 

space, etc. 

EEG inverse problem is a nonlinear optimization problem, 

and the main idea is to fit the forward calculated potential 

distribution with the measured scalp data by adjusting the 

parameters of the dipole. The mathematic form can be 

expressed to the minimum of the objective function based on the 

least-square error min
,

e( , )
r q

r q . The objective function is as 

follows. 
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2
1
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m

i
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  r q u u u u  (2) 

where u  is the measured potential distribution on the scalp. 

The EEG source location problem has become a 

multi-parameter optimization problem. Generally, the 

optimization method is studied to find the parameters that 

minimize the objective function. However, due to the ill-posed 

problem, the parameter optimization process is difficult to 

complete. It is necessary to introduce various constraints in the 

solution process, and then find a suitable approximate solution 

through various numerical calculation criteria. 

III. THEORY OF DEEP NEURAL NETWORK 

A. Multilayer perceptron  

Multilayer perceptron (MLP) is a common and relatively 

simple feedforward neural network, which is generally 

composed of input layer, hidden layer, and output layer. When 

MLP is used to accept input x and produce output y, information 

flows forward through the network. The input x provides the 

initial information that then propagates up to the hidden units at 

each layer and finally produces y which is a nonlinear weighted 

sum of input. This process is called forward propagation, which 

is illustrated as follows. 
0
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where, a0 is initial information, j
a  is the output of the j-th layer, 

z  is the input of the hidden layer, W is the weight matrix, b is the 

bias vector, j=(0,1,...,l) is the number of layers in the network, 

and ( )f  called activation function is a non-linear function. 

When constructing MLP, we need to determine some details. 

Typically, a loss function is defined to measure the performance 

of the model. Then, an activation function is specified. 

Non-linearity of the neural network is achieved by using affine 

transformation followed by an activation function. The affine 

transformation is controlled by learned parameters including 

weights W and the biases b. After that, we select an optimization 

method to update parameters. In addition, other 

hyper-parameters, such as architecture and regularization, affect 

the performance of the model. These details are described 

below. 

1) Loss function 

Common loss functions of neural networks include cross 

entropy loss, L1 loss, L2 loss, etc. The result of the regression 

task is an integer or a real number, so the common loss functions 

of regression task have L1 loss, L2 loss, and their 

improvements. Usually, the data in the task is normalized, the 

sample data is less than 1. Some simulation results show that L2 

loss is not particularly robust. When the predicted value of the 
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function is far from the true value, it may cause the gradient to 

explode. By contrast, L1 loss function is not easily affected by 

the large error. It is also called mean absolute error (MAE), and 

the function can be defined as follows.  

1

1 k

i i

i

MAE y y
k 

   (4)

 ( where, m is the number of samples. 
iy  is the predicted value, 

and 
iy  is the true value. 

2) Activation function 

The activation functions commonly used in neural networks 

include sigmoid function, tanh function, rectified linear unit 

function (ReLU), etc. Some studies show that sigmoid and tanh 

functions have the problem of gradient disappearance. The 

ReLU function can effectively alleviate this problem, which has 

the advantages of easy optimization, avoiding gradient 

explosion problems, and simplifying the calculation process. 

Despite these considerable advantages, the ReLU function is no 

longer working when the input is less than zero. However, the 

leaky ReLU function uses a non-zero slope when x<0, which 

makes the activation function meaningful in the negative 

domain [23] . The leaky ReLU can be defined as follows.  
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where (0,1)  is a constant.  

3) Optimization method for network parameters  

Neural networks are usually trained by using iterative 

gradient-based optimizer that drives the loss function to an 

extremely low value. The backpropagation (BP) algorithm 

allows the information from the loss to through the network to 

compute the gradient. After these gradients have been 

computed, the optimization algorithm that we selected uses 

these gradients to update the parameters of this network. 

Common optimization algorithms include stochastic gradient 

descent, mini-batch gradient descent, adaptive moment 

estimation (Adam), and so on [24] . Adam algorithm can 

calculate the adaptive learning rate of each parameter, avoiding 

the problem that the learning rate is difficult to choose in the 

gradient descent method. Compared with other adaptive 

learning rate algorithms, its convergence speed is faster, and the 

learning is more effective. 

4) Selection of architecture 

The architecture refers to the overall structure of the network. 

Its main considerations are choosing the depth of the network 

and the width of each layer. The ideal network architecture for a 

task must be found via experimentation guided by monitoring 

the validation set error. 

5) Regularization  

Regularization, which can prevent the model from 

overfitting, is widely used in model training. Common 

regularization methods are the early stopping, the L1/L2 weight 

decay and the dropout method. The early stopping method is 

designed to solve the problem that the number of epochs needs 

to be manually set. 

After each epoch, the test results of the verification set and 

record the best verification set accuracy so far. As the epoch 

increases, if the test error is found to increase on the verification 

set, then stop training. The weight of the highest accuracy rate in 

the previous processing of the test set is used as the final 

parameter of the network.  

B. Convolutional neural network  

Convolutional neural network (CNN) is one of the most 

successful cases of DNN. It is a special deep feedforward neural 

network designed under the influence of the concept of 

"receptive field" in the field of biological neuroscience [25]. 

The traditional CNN structure consists of input layer, 

convolution layer, pooling layer, fully connected layer, and 

output layer. The convolution layer and the pooling layer are 

unique structures of CNN.  

The convolutional layer repeatedly acts on each receptive 

field of the entire input signal through a convolution kernel, and 

the result of the convolution constitutes a feature map of the 

input signal. Assuming that the input of the l-th convolutional 

layer is represented by l
z  and the output is represented by l

a , 

the relationship between the output and the input is defined as 

follows. 

1
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a z
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where ( )f  is the activation function, M is the number of 

convolution kernel, k is the convolution kernel matrix, b is the 

bias parameter, and * is the convolution symbol.  

The purpose of the pooling layer is to compress the input 

matrix, reduce the amount of network calculations, and make 

the model more robust. The specific operation is to divide the 

input feature map into multiple non-overlapping areas, and then 

compress each region according to the pooling standard, which 

is generally the average value or the maximum value, which 

ensures the invariance of feature translation and scaling. The 

symbol pool (•) represents the pooling function. Then the output 

of layer l+1 is defined as follows. 
1 ( )l lpool a a  (7) 

After multiple alternating convolution and pooling layers, the 

next is the fully connected layer, which expands all the feature 

maps into one-dimensional features as the input of the fully 

connected network. After the weighted summation and 

activation function of the previous layer, the output of the fully 

connected m-layer can be obtained, as shown in equation (3).  

The CNN training algorithm is also mainly based on the BP 

algorithm of gradient descent. The goal is to estimate network 

parameters based on training samples and expected output, 

including convolution kernel parameter k, fully connected layer 

network weight W and each layer bias b. 

C. EEG inverse problem using deep neural network 

EEG dipole source location problem is expressed to get a set 

of ( , )r q  (dipole parameters) given a set of input u (scalp 
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potential) through a certain state transition. 

To solve the dipole parameters by using the neural network 

method, many training samples are obtained by the forward 

calculation of EEG firstly. Secondly, the neural network is 

trained by the training set. After that, the optimal function is 

used to minimize the loss function by adjusting the 

hyper-parameters and cross verifying the training results on the 

validation set. Finally, the trained model is adopted to predict 

source information through the the potential distribution on the 

scalp surface, and the optimal function on the test set was 

selected. The whole process is shown in Figure1. 

Train  neural network 

model

End

Forward 

model

Training

Testing

Forward 

calculationl

Simulated 

parameters

Testing 

EEG

Trained 

model

Estimated

parameters

Start

 

Fig.1 Network flowchart 

IV. RESULTS  

A. Generating data using forward model 

To solve the EEG inverse problem, it is necessary to 

determine the geometric model of the head and the impedance 

distribution information of each part. Some studies have shown 

that using neural network methods, high-precision real head 

model takes more time and computational cost to perform 

forward calculations, but the source location accuracy is not 

significantly improved [8]. Furthermore, to simplify the 

calculation and save the computation cost, 4-layer concentric 

sphere model is chosen as the head model, which considers the 

inhomogeneity of the conductivity of each layer of the head 

[27]. A 4-layer concentric sphere model was established as 

shown in Figure.2. It includes brain, cerebrospinal fluid, skull, 

and scalp from inside to outside. The electrical conductivities of 

each part are 0.33 S•m-1, 1 S•m-1, 0.0042 S• m-1, and 0.33 

S•m-1, the relative radii are 0.8, 0.85, 0.92, and 1, respectively, 

and the radius R of the outermost scalp is 9 cm. 

In this study, the electrode placement of EEG signal is 128 

channels, which in accordance with the international 10-20 

electrode lead positioning standard. The result of the forward 

problem is the analytical solution. Using the method of 

reference [26], the result which includes the corresponding 

scalp potential of the dipole source is approximated through the 

Legendre polynomial transformed into a closed-form formula.  

It is generally believed that the dipole source can be located 

at any positions in the cerebral cortex, and the location of the 

dipole source is randomly selected. In the 4-layer concentric 

sphere model, the three coordinates of the dipole position vector 

r are sampled independently with an equal probability 

distribution. The three components of the dipole moment q are 

also randomly generated on a normal distribution with zero 

mean and unit variance. For each dipole, the moment is 

different.  

 

Fig.2 Four-layer concentric model 

B. Modeling with deep neural networks 

In this study, we establish four network models with different 

structures including one MLP model and three CNN models. 

Firstly, we built a fully connected MLP structure. After some 

testing, the best performing MLP architecture is selected. There 

are seven layers, including six hidden layers and one output 

layer. The size of the layers is 768, 512, 320, 256, 128, 6 from 

hidden layer to output layer. The Leaky ReLU written in 

equation (5) is selected as the activation function of the model. 

Then, we built a simple structure of CNN, containing only 

one convolutional layer and one maximum pooling layer 

(CNN-1). The convolutional layer has 3×3 filters, and the 

number of filters is 32. The Leaky ReLU is used as the 

activation function of the convolutional layer.  

Furthermore, we built the third model named CNN-2. It 

contains 6 convolutional layers and 6 pooling layers, i.e., the 

structure of CNN-1 repeats five times. The convolutional layers 

have 3×3 filters, and the number of filters is 32, 32, 64, 64, 

128,128 in sequence. The other hyper-parameters are the same 

as CNN-1. 

The fourth model (CNN-3) is a structure similar in Visual 

Geometry Group (VGG) network, which has small convolution 

kernel and good generalization performance. CNN-3 has 6 

convolutional layers and 3 pooling layers, i.e., the structure with 

two convolutional layer and one maximum pooling layer repeats 

three times. The other hyper-parameters are the same as CNN-2. 

All max-pooling is implemented for 2×2 patches. After all 

CNN structures, 3 fully connected layers containing 512, 256, 

and 6 hidden units are attached to obtain the output. The total 

parameters of MLP, CNN-1, CNN-2, and CNN-3 are about 5M, 

1M, 0.7M, and 0.5M, respectively.  

For comparing the differences between models, the same 

hyper-parameters should be selected in the design of models. 

The loss function chose the MAE in equation (4), and Adam is 
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selected as the optimization algorithm. In additional, batch 

normalization (BN) layer is added to the networks for 

preventing overfitting. We also examined more complex CNN 

structures, but they did not show obvious improvement in the 

localization performance. 

C. Experiment with simulation data  

The simulated signal is used for the experiment to show the 

performance of the proposed approach. A total of 100,000 sets 

of analog signals are generated, 60% of which are used as the 

training set, 20% as the validation set, and 20% as the test set. 

Each signal is 128 channels located by the standard 

BIOSEMI-128 EEG system. The four networks are trained on 

the training set with 400 epochs. For each network, the loss 

functions on validation sets are shown in Figure 3. CNNs 

converge around 50 epochs, whereas MLP converges after 250 

epochs. For MLP, CNN-1, and CNN-2 models, the loss function 

on the verification set drops to about 0.03 after 400 iterations. It 

can be seen from the figures that the loss function of CNN-3 is 

the lowest. 

 

(a) 

 

 (b)  

Fig.3 Performance of four models. (a) shows the loss function 

MAE, and (b) is its logarithmic graph 

The early stop method is used to find the optimal function in 

training. The loss function changes as shown in Figure 4, where 

only the model of error reduction is recorded. After several 

iterations, the loss curves converge to a low level. Meanwhile, 

the network shows good generalization on the validation set. 

 

Fig.4 Performance of model based on early stopping 

The proposed approach estimates the source location with 

dipole parameter regression. After selecting optimal function, 

the performance of four models is evaluated by using errors 

between estimated parameter and ground-truth parameter in the 

simulated data. To quantitatively evaluate the result of dipole 

source positioning, the the global and individual errors of 

absolute error (Aerror) and relative error (Rerror) are 

calculated, respectively. The formulas are defined as follows. 

1 1

N S

ir ir

i r

y y

Aerror
SN

 




  (8) 

2

1 1

2

1 1

N S

ir ir

i r

N S

ir

i r

y y

Rerror

y

 

 







 (9) 

where S is the number of components in the output vector, N is 

the number of samples, y  is the actual value, and y is the 

predicted value.  

Calculating the overall error of the six parameters of a dipole 

from equation (8) and equation (9), and then calculating the 

errors of the six parameters separately to avoid interference 

between data changes of different magnitudes. The error of the 

test set is shown in Table 1 and Table 2. Compared with other 

methods, the Aerror and Rerror of CNN-3 are the smallest. 

According to the comparison of calculation cost and 

localization error of six parameters, CNN-3 is the best 

performing model. Its total positioning errors of the six 

parameters using are the smallest, and the estimation of each 

parameter is also satisfactory.  

For further measuring the positioning error, the mean 

localization error distance of dipole positioning is calculated. 

The formulas are defined as follows. 

D  r r  (10) 

1

1 N

i

i

r D
N 

   (11) 

2

1

1 N

i

i

SD D r
N 

 （ ）  (12) 

where, r  is the actual value of position vector, and r is the 

predicted value. D is the Euclidean distance, r  is mean error 

distance and SD is the standard deviation.  
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Table 1 Localization Aerror of dipole 

Method MLP CNN-1 CNN-2 CNN-3 

(r,q) 0.0282 0.0350 0.0249 0.0148 

rx 0.0416 0.0357 0.0283 0.0207 

ry 0.0413 0.0388 0.0289 0.0273 

rz 0.0377 0.0303 0.0183 0.0167 

qx 0.0231 0.0378 0.0167 0.0083 

qy 0.0222 0.0400 0.0188 0.0085 

qz 0.0234 0.0277 0.0175 0.0121 

Table 2 Localization Rerror of dipole 

Method MLP CNN-1 CNN-2 CNN-3 

(r,q) 0.0091 0.0122 0.0123 0.0050 

rx 0.0205 0.0219 0.0246 0.0191 

ry 0.0306 0.0273 0.0262 0.0169 

rz 0.0178 0.0133 0.0124 0.0073 

qx 0.0112 0.0125 0.0122 0.0024 

qy 0.0091 0.0133 0.0140 0.0025 

qz 0.0050 0.0058 0.0054 0.0025 

After calculation, the experimental results r  and SD of the 

four networks are recorded in Table 3. The positioning 

distances of neural network methods are generally low, between 

0.8~0.4 mm. Their positioning error is lower than the artificial 

neural network model [8]. It is observed that the total 

parameters and train time of CNN-3 are the smallest, while 

CNN-2 is the second smallest among the four models. Among 

them, CNN-3 achieved the best positioning effect, and the 

optimal result of the test set is 0.398±0.286 mm. Therefore, 

CNN-3 is used as the source location model in the following 

paragraphs. 

Table 3 Comparison of position results 

Method Times(s) 
The position error(cm) 

r  SD 

MLP 5330.48 0.0824 ±0.0782 

CNN-1 3014.14 0.0703 ±0.0661 

CNN-2 6737.37 0.0502 ±0.0425 

CNN-3 6529.66 0.0398 ±0.0286 

To visually perform localization results and generalization 

capabilities of the CNN-3 model, randomly select 100 samples 

from the new test set and compare the difference between the 

predicted values of the 6 dipole parameters and the true values. 

From Figure 5, the red hollow circles represent the predicted 

values, and the green points represent the true values. Among 

them, the red circles cover the green points well, which means 

the fitting results of the dipole position parameters and the 

dipole moment parameters are awfully close true values, and 

indicates the positioning effect of the deep neural network is 

good. 

 

 

Fig.5 Result of 100 single dipole localization using CNN-3 

 

D. Experiment with real EEG data in working memory  

EEG is a helpful tool to study the cognition function of the 

brain such as working memory. Working memory refers to the 

ability to store and maintain pertinent information (e.g., 

short-term memory), as well as applying the information with 

the help of higher-level executive processes. It is currently one 

of the most active research fields in cognitive neuroscience.  

We use the Deese-Roediger-McDermott (DRM) paradigm to 

study the effect of emotion on working memory. The improved 

DRM paradigm working memory task experiment was 

designed, and 28 subjects were selected to participate in the 

experiment. The experimental materials include 12 emotional 

word lists mixed with 4 positive, 4 neutral, and 4 negative. Each 

word list contains 12 learning words (all of them appear in the 

learning phase, some of them appear in the test phase) and 1 

keyword (it only appears in the test phase). In the learning 

phase, the lists were mixed and presented to the participants, 

and each word was displayed on the computer monitor for 1 s. 

During the test phase, each word was displayed on the computer 

monitor for 2 s. The participants need to judge whether they 

have seen the word in the learning phase by pressing different 

keys on the keyboard. Neuroscan equipment is used to collect 
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64 channel EEG signals of subjects in remembering Chinese 

words with different emotions. The distribution of electrode 

channels conforms to the 10-20 electrode lead positioning 

standard. 

The obtained EEG is pre-processed to remove kinds of noise 

and artifact. The peak point after preprocessing is selected as 

the time point. The CNN-3 model is trained using 64-pilot 

simulation EEG data. Its hyper-parameters are the same as the 

simulation model. 60,000 samples are used to train. Its training 

takes 4728.53 s. After that, the trained network is used to locate 

24 points of the real EEG in three emotions. It takes about 2 s.  

The source localization results of different brain regions are 

selected for mapping. The results of the positive group are 

shown in Figure 6. Figure 6(a) and Figure 6(b) indicate the 

source is mainly activated in the left prefrontal lobe and the 

temporal lobe. The source localization results of the neutral 

group are shown in Figure 7. Figure 7(a) and Figure 7(b) 

indicate the source is mainly activated in the posterior frontal 

lobe and the temporal lobe. The source localization results of 

the negative group are shown in Figure 8. Figure 8(a) and Figure 

8(b) indicate the source is primarily activated in the prefrontal 

lobe and the temporal lobe.  

The activation region of the estimated source is mainly 

located in the frontal lobe and temporal lobe. It is consistent 

with the source localization results by using commercial 

software Curry 8, which proves the effectiveness of the 

proposed method on real EEG signals. 

The positioning results of the three emotions can be seen 

from the activation position that the activation position of the 

frontal lobe of the subjects in the positive and negative 

emotional states is biased to the frontal lobe, but the activation 

source of the positive group is biased to the left hemisphere of 

the brain, and the activation source of the negative group is 

biased. In the right hemisphere, the main activation area of the 

calm group is more inclined to the posterior frontal and 

temporal lobes. The left and right hemispheres of the human 

brain play different roles. Among them, the left hemisphere of 

the brain processes cognitive activities such as language, 

reading and reasoning. The right hemisphere of the brain is 

mainly responsible for cognitive functions such as space and 

music, and the prefrontal lobes of the left and right hemispheres 

are involved in the regulation of emotions [27]. Memory items 

in this experiment are words rather than objects, are related to 

verbal working memory rather than object working memory 

[28]. The localization results are consistent with physiological 

knowledge related to working memory [29, 30]. 

 

 

(a) 

 

 (b) 

Fig.6 Source localization result of the positive group 

 

 (a) 

 

 (b) 

Fig.7 Source localization result of the neutral group 

 

 (a) 

 

 (b) 

Fig.8 Source localization result of the negative group 

V.  DISCUSSION  

In this study, four DNNs with different structures are 

established to locate the EEG dipole source. Through the 

analysis of the positioning results of the four models, it is found 

that the errors are incredibly low, which proves the effectiveness 

of MLP and CNN in the process of solving the EEG inverse 

problem. Compared with the shallow model, the deep models 

have a better approximation on the EEG inverse problem and 

higher positioning accuracy.  

CNN-1 and MLP have no obvious difference in positioning 

accuracy. However, CNN-1 model has fewer parameters than 
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MLP. It indicates that shallow CNN and fully connected 

networks have similar results in the application of dipole 

positioning, but the CNN-1 model is more efficient than MLP. 

Furthermore, the deeper CNN-2 and CNN-3 spent more time 

and have higher positioning accuracy than CNN-1. It proves the 

usability of the deeper CNN in this field. 

For the four networks, CNN-3 is the most prominent model. 

Compared with other networks, its total parameter and 

calculation cost are the smallest, and the calculation accuracy is 

the highest. In terms of structure, CNN-3 includes more 

convolutional layers, so it has a stronger ability to express data 

features. In contrast, CNN-2 loses some information through the 

dimension reduction in the pooling layer. Its accuracy is lower 

than CNN-3. 

 During the calculation of the inverse problem, the effect of 

the pooling layer is not obvious because of the small data, but 

the full convolution structure can achieve higher accuracy on 

this occasion. The forecast time of four models for the new 

dipole parameters is about 5 s. And these models achieve high 

positioning accuracy and avoid the problem of long calculation 

time of traditional methods. The results show the effectiveness 

and superiority of the DNN method, especially CNN, in EEG 

inverse problem. And CNN-3 is the superior model among 

them. 

When CNN-3 is used to locate the source of real EEG signals 

in working memory, the sources of EEG with three emotions are 

mainly activated in the prefrontal lobe and the temporal lobe. It 

is in accordance with the source localization results of software 

Curry, and consistent with the physiological knowledge related 

to working memory. These results reveal the proposed method 

is acceptable on EEG inverse problem of real signals.  

Convolutional neural network is used to directly estimate 

source parameters. It can more accurately approximate the 

complex conduction process of neural signals and accurately 

locate local sources. And through the learning ability of neural 

networks, the source can be quickly located, which can better 

utilize the high time resolution of EEG. 

VI. CONCLUSIONS 

In this paper, four DNN models including a MLP model and 

three CNNs are proposed to solve EEG inverse problem based 

on ECD model. The simulation results for four-layer concentric 

head model demonstrate that DNNs can obtain high positioning 

accuracy localization and can generalize frequently. Also, they 

can speed up the calculation process of inverse problems 

without given prior knowledge. 

 When DNN is applied to locate the source of real EEG data 

in working memory experiments, the results are consistent with 

physiological knowledge. These outcomes demonstrate the 

proposed DNN methods are beneficial to advance the research 

of the EEG source localization problem and helpful to 

accelerate the study of brain function.  
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