
 

 

Abstract—This article showcases significant progress in 

solving two renowned problems in the calculus of series: 

the Flint Hills and Cookson Hills series. For almost twenty 

years, a long-standing question has remained unanswered 

in regard to their convergence. Mainly, proving the 

convergence of the Flint Hills series would significantly 

impact the redefinition of the upper bound for the 

irrationality measure of the number π. One of the results 

presented in this article is that the Flint Hills series 

converges to 30.3144... which leads to a redefinition of the 

upper bound for the irrationality measure of π, specifically 

𝝁(𝝅) ≤  𝟐. 𝟓. This work proposes a transformation that 

solves the mystery of the Flint Hills and Cookson Hills 

series. It is based on a summation formula developed by 

mathematicians Adamchik and Srivastava. By leveraging a 

specialized series supported by the Riemann zeta function, 

this approach successfully transforms the original Flint 

Hills and Cookson Hills series into novel convergent 

versions with unique significance. The resulting sequences 

linked to these series are positive and bounded and satisfy 

convergence. Moreover, this article extends the Flint Hills 

series when the cosecant function has an arbitrary 

complex argument 𝒏 + 𝒊𝜷, with 𝒊 = √−𝟏, establishing a 

new series representation based on the polylogarithm 

𝑳𝒊𝟑(𝒆𝒊𝟐𝒌), with 𝒌 = 𝟏, 𝟐, 𝟑, …, 𝒆 the Euler’s number, which 

bears resemblance to the famous integral of the Bose-

Einstein distribution as a relevant finding. This is a never-

seen-before link between the Flint Hills series and 

polylogarithms. Furthermore, a relationship between the 

Apéry constant and the Flint Hills and Cookson Hills 

series has been established. This article presents a 

significant breakthrough in the calculus of series by 

introducing a new method based on the Riemann Zeta 

function and logarithmical expressions derived from the 

Adamchik and Srivastava summation formula. The novel 

approach extends the analysis of convergence criteria for 

series, addressing ambiguous cases characterized by 

abrupt jumps. Thus, the Flint Hills series converges to 

30.3144... and the Cookson Hills series to 42.9949... as 

proved in this article. 

 

Keywords—Apéry’s constant, Cookson Hills and Flint 

Hills series, summation formula of Adamchik and 

Srivastava involving the Riemann zeta function,  the upper 

bound for the irrationality measure of π. 

I.INTRODUCTION 
n 2002, Pickover, [1], introduced the Flint-Hills series as 
∑

𝑐𝑠𝑐2(𝑛) 

𝑛3
∞
𝑛=1 , where the term 𝑐𝑠𝑐 denotes the cosecant 

function. Despite efforts to analyze the convergence of this 
series, it remains an unsolved problem due to the sporadic 
large values and unexpected jumps of 𝑐𝑠𝑐2(𝑛) in the plots of 
the partial sums up to 𝑛 = 104, [2]. Some statistical results, 
such as, [3], suggest that the Flint Hills series tends towards 
the numerical value of 30.3144 … However, there is no 
known method to solve that mystery which makes the Flint-
Hills series an extremely difficult problem in mathematical 
analysis and calculus. Moreover, the most interesting fact 
about this series is that the behavior of its partial sums is 
closely connected to the rational approximations to π. For 
example, [4], proved that convergence of the Flint Hills series 
would imply a new upper bound of 𝜇(𝜋) ≤ 2.5 for the 
irrationality measure of π. In fact, [5], established the current 
upper bound for the irrationality measure of π, i.e., 𝜇(𝜋) ≤ 
7.6063.... Furthermore, as described the irrationality measure 
µ(x) of a positive real number 𝑥 is defined as the infimum of 
such 𝑚 that the inequality 0 < |𝑥 −

𝑝

𝑞
| <

1

𝑞𝑚 holds only for a 
finite number of co-prime positive integers 𝑝 and 𝑞. If no such 
𝑚 exists, then 𝜇(𝑥) = +∞ and 𝑥 is called Liouville number, 
as a result, the larger is µ(𝑥), the better 𝑥 is approximated by 
rational numbers. Thus, if 𝜇(𝑥) = 1 means that 𝑥 is a rational 
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number and for the other cases 𝜇(𝑥) = 2 and 𝜇(𝑥) ≥ 2 that 𝑥 
is an irrational algebraic number and 𝑥 is a transcendental 
number respectively. Therefore, there exists a strong 
connection between number theory, specifically the 
irrationality measure of π, and the solution of the Flint Hills 
series problem due to its trigonometric nature of it, as evident 
in the existing literature. This paper aims to propose a novel 
representation, which could establish a new convergence 
criterion for special cases of these series in the future, for 
computing the convergent values of the Flint Hills and 
Cookson Hills series, and other known general cases of these 
series that have not been understood yet. This new 
representation utilizes a formula that translates the observed 
ambiguity in convergence for both renowned series into a 
stable convergence pattern linked to positive and bounded 
sequences that avoid the original jumps computed by the 
partial sums of these series, ultimately yielding the well-
established and statistically proven values of 30.3144... for the 
Flint Hills series and 42.9949... for the Cookson Hills series as 
expected. 

    The mathematical analysis is also related to how to 
address the challenges in solving the Cookson Hills series 
∑

𝑠𝑒𝑐2(𝑛) 

𝑛3
∞
𝑛=1 , [6], with 𝑠𝑒𝑐 the secant function, because this 

series is closely linked to the Flint Hills series. Essentially, 
solving the Flint Hills series also addresses the convergence 
status of the Cookson Hills series, which is often overlooked 
or not mentioned explicitly. Pickover, in 2002, [1], introduced 
this enigmatic series with the same difficulty level of analysis 
because it is not known if the Cookson Hills series converges, 
since 𝑠𝑒𝑐2(𝑛) can have also sporadic large values as known. 
Some other examples of interesting series can be also 
∑

𝑡𝑎𝑛2(𝑛) 

𝑛3
∞
𝑛=1  and ∑

𝑐𝑜𝑡2(𝑛) 

𝑛3
∞
𝑛=1 , which will be also analyzed in 

this article as findings. The importance of these unsolved 
problems in the calculus of series is often underestimated, as 
they are rarely mentioned in the literature on series and 
sequences. Moreover, this article establishes an intriguing 
connection between this kind of series and certain concepts in 
physics, owing to the prevalence of polylogarithms in an 
extended version of the original Flint Hills series, which will 
be discussed later.   

To obtain a useful tool for addressing the convergence issue 
of these series, this work introduces an important relationship 
discovered by [7]. This relationship is a summation formula 
that the authors listed as (4.8) in their section 4, Series 

Involving Polylogarithmic Functions, i.e., ∑ 𝑡𝑚 

𝑚2 𝜁(2𝑚) =∞
𝑚=1

𝑙𝑜𝑔 (𝜋√𝑡 𝑐𝑠𝑐 (𝜋√𝑡 )). The term 𝑐𝑠𝑐  corresponds precisely to 
the cosecant function used in the Flint Hills series; 𝜁 is the 
Riemann Zeta function. Thus, it would be useful to approach 
the numerator 𝑐𝑠𝑐2(𝑛) in the Flint Hills series by a trick that 
has never been attempted before.  

Adamchik and Srivastava derived their formula after 
manipulating the equation (4.5) of their article, i.e., the 
expression 𝐿(𝑛): = ∑ (−1)𝑛𝐿𝑖2 (

4

𝑛2)∞
𝑛=2 , and replacing the 

polylogarithmic function with its series representation given 

by their equation (1.12), i.e., 𝐿𝑖𝑠(𝑧): = ∑
 𝑧𝑛

𝑛𝑠
∞
𝑛=1  , with 𝑠 = 2, 

then, they changed the order of summation, and evaluated the 
inner sum, a procedure that led to getting a fascinating formula 

listed as (4.6), 𝐿(𝑛) = 2 ∑
𝜁(2𝑘) 

𝑘2 − ∑ {𝜁(2𝑘)∞
𝑘=1

∞
𝑘=1 − 1}

4𝑘 

𝑘2 .    
The equation (4.6) was combined with another relationship 

listed as (4.7) by these authors, resulting in the following 

expression ∑
 𝑡𝑘

𝑘2 𝜁(2𝑘) = ∫
𝑑𝑡

𝑡

1

0
∞
𝑘=1 ∑

 𝑡𝑘

𝑘
𝜁(2𝑘)∞

𝑘=1 . After a 
detailed evaluation of the inner sum, they derived the formula 
listed as (4.8) which serves as the main tool in this paper to 
validate the convergence of the Flint Hills and Cookson Hills 
series. The methods for evaluating the inner sum have been 
explained in detail in their article. Thanks to them, the known 
relationship (4.8), ∑

𝑡𝑚 

𝑚2 𝜁(2𝑚) = 𝑙𝑜𝑔 (𝜋√𝑡 𝑐𝑠𝑐 (𝜋√𝑡 ))∞
𝑚=1 , 

has a formal derivation and even is validated when using it for 
the convergence of the Flint Hills and Cookson Hills series. 

In terms of future research directions in the field of these 
particular unsolved series and the potential application of the 
relationship (4.8) within the framework of a future formal 
criterion, this article elucidates why solving the Flint Hills and 
Cookson Hills series problems would provide the fundamental 
groundwork for addressing general cases such as the 
generalized Flint Hills series ∑

𝑐𝑠𝑐𝑣(𝑛) 

𝑛𝑢
∞
𝑛=1  or the generalized 

Cookson Hills series ∑
𝑠𝑒𝑐𝑣(𝑛) 

𝑛𝑢
∞
𝑛=1  with various integers or 

even real values for 𝑢 and 𝑣. This paper presents a significant 
finding regarding the existence of a fundamental formula, as 
introduced by Adamchik and Srivastava in their paper, namely 
equation (4.8), which allows for the convenient adjustment of 
the cosecant function to transform the inherent complexity of 
the original Flint Hills series problem and subsequently, the 
Cookson Hills series problem, into a manageable set of series 
that adhere to criteria of boundedness and non-diverging 
positive terms. This is the significant contribution of the 
present article. Subsequently, researchers can comprehend the 
distinctive aspects that set this work apart from previously 
published studies on the subject.  This paper presents the sole 
known method that establishes the convergence of both the 
Flint Hills and Cookson Hills series unequivocally. The 
numerical evidence obtained through these formulas as 
findings align with the anticipated values of convergence, 
supported by statistical analysis. 

II.PROOF OF CONVERGENCE OF THE FLINT HILLS SERIES 
As previously mentioned, Adamchik and Srivastava 
introduced their formula, denoted as (4.8), [1],   

 
∑

𝑡𝑚 

𝑚2 𝜁(2𝑚) = 𝑙𝑜𝑔 (𝜋√𝑡 𝑐𝑠𝑐 (𝜋√𝑡 ))∞
𝑚=1 ,                  (1) 

 
the hitherto unnoticed use of this relationship within the 
context of the Flint Hills and Cookson Hills series lies in the 
fact that the variable 𝑡 can assume several numerical values 
whenever 𝑡 < 1 to avoid imprecise domains of convergence 
that do not correspond to the validity of (1). Therefore, I 
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consider the real values of 𝑡 as follows 
 

𝑡 =
1

𝜋2
𝑒−2𝑐𝑠𝑐2(𝑛),                              (2) 

 
where 𝑒 = 2.71828 …  is the Euler’s number, 𝜋 = 3.1415 … 
is the mathematical constant pi, 𝑐𝑠𝑐 (𝑛) =

1

𝑠𝑖𝑛 (𝑛)
 represents the 

cosecant function based on sine, and 𝑛 = 1, 2, 3, … denotes the 
set of non-negative integers from the series expansion of the 
Flint-Hills series. In equation (2), there is no specific value of 
𝑛 that can cause divergence in 𝑐𝑠𝑐2(𝑛) and exceed 𝑡 to a value 
greater than 1. This is because the exponential term 𝑒−2𝑐𝑠𝑐2(𝑛) 
never exhibits such behavior. Thus, I establish the value of 𝑡 
in this manner. Furthermore, 𝑐𝑠𝑐2(𝑛) plays a crucial role in 
the representation of the Flint Hills series within this 
approach. I substitute equation (2) into equation (1) by 
following these algebraic steps 
 

∑
 𝑒−2𝑚 𝑐𝑠𝑐2(𝑛)

𝑚2𝜋2𝑚 𝜁(2𝑚) =∞
𝑚=1

                                 𝑙𝑜𝑔 (𝜋√
1

𝜋2 𝑒−2𝑐𝑠𝑐2(𝑛) 𝑐𝑠𝑐 (𝜋√
1

𝜋2 𝑒−2𝑐𝑠𝑐2(𝑛))),  

 

∑
 𝑒−2𝑚 𝑐𝑠𝑐2(𝑛)

𝑚2𝜋2𝑚 𝜁(2𝑚) = 𝑙𝑜𝑔 (𝑒−𝑐𝑠𝑐2(𝑛) 𝑐𝑠𝑐 (𝑒−𝑐𝑠𝑐2(𝑛) ))∞
𝑚=1 ,  

 

∑
 𝑒−2𝑚 𝑐𝑠𝑐2(𝑛)

(𝑚 𝜋𝑚)2 𝜁(2𝑚) = 𝑙𝑜𝑔(1) − 𝑙𝑜𝑔𝑒𝑐𝑠𝑐2(𝑛) +∞
𝑚=1

                                                                           𝑙𝑜𝑔 (𝑐𝑠𝑐 (𝑒−𝑐𝑠𝑐2(𝑛))), 
 

∑
 𝑒−2𝑚 𝑐𝑠𝑐2(𝑛)

(𝑚 𝜋𝑚)2 𝜁(2𝑚) = −𝑐𝑠𝑐2(𝑛) + 𝑙𝑜𝑔 (𝑐𝑠𝑐 (𝑒−𝑐𝑠𝑐2(𝑛)))∞
𝑚=1 ,   

 

𝑐𝑠𝑐2(𝑛) = 𝑙𝑜 𝑔  [𝑐𝑠𝑐(𝑒−𝑐𝑠𝑐2(𝑛) )] − ∑
 𝑒−2𝑚 𝑐𝑠𝑐2(𝑛)

(𝑚 𝜋𝑚)2
∞
𝑚=1 𝜁(2𝑚). 

 
It is evident that 𝑐𝑠𝑐2(𝑛) can be divided by 𝑛3 in the next 

step, as demonstrated below 
 

𝑐𝑠𝑐2(𝑛)

𝑛3 =
𝑙𝑜 𝑔  [𝑐𝑠𝑐(𝑒−𝑐𝑠𝑐2(𝑛) )]

𝑛3 −
1

𝑛3
∑

 𝑒−2𝑚 𝑐𝑠𝑐2(𝑛)

(𝑚 𝜋𝑚)2
∞
𝑚=1 𝜁(2𝑚),     

(3) 
 

with 
𝑙𝑜 𝑔 [𝑐𝑠𝑐(𝑒−𝑐𝑠𝑐2(𝑛) )]

𝑛3 = 𝑛−3𝑙𝑜 𝑔 [𝑐𝑠𝑐(𝑒−𝑐𝑠𝑐2(𝑛) )] or 

also
𝑙𝑜 𝑔  [𝑐𝑠𝑐(𝑒−𝑐𝑠𝑐2(𝑛) )]

𝑛3 = 𝑙𝑜 𝑔  { 𝑐𝑠𝑐(𝑒−𝑐𝑠𝑐2(𝑛) ) } 𝑛−3.   
 
Thus, I get 
 
 
 
 
 
 
𝑐𝑠𝑐2(𝑛)

𝑛3
= 𝑙𝑜𝑔{𝑐𝑠𝑐(𝑒−𝑐𝑠𝑐2(𝑛) )}

 𝑛−3

 

− 
1

𝑛3  ∑
 𝑒−2𝑚 𝑐𝑠𝑐2(𝑛)

(𝑚 𝜋𝑚)2
∞
𝑚=1  𝜁(2𝑚).                (4) 

 
Based on (3) and (4), I represent the Flint Hills series 

through the following equivalent versions, (5) and (6), 
 

∑
𝑐𝑠𝑐2(𝑛)

𝑛3

∞

𝑛=1

 = ∑
𝑙𝑜 𝑔  𝑐𝑠𝑐(𝑒−𝑐𝑠𝑐2(𝑛) )

𝑛3
 

∞

𝑛=1
 

         − ∑
1

𝑛3  ∑
 𝑒−2𝑚 𝑐𝑠𝑐2(𝑛)

(𝑚 𝜋𝑚)2
∞
𝑚=1  𝜁(2𝑚)∞

𝑛=1 ,              (5) 
 

∑
𝑐𝑠𝑐2(𝑛) 

𝑛3
∞
𝑛=1 = ∑ 𝑙𝑜 𝑔  { 𝑐𝑠𝑐(𝑒−𝑐𝑠𝑐2(𝑛)) } 𝑛−3∞

𝑛=1    

                               − ∑
1

𝑛3  ∑
 𝑒−2𝑚 𝑐𝑠𝑐2(𝑛)

(𝑚 𝜋𝑚)2
∞
𝑚=1  𝜁(2𝑚)∞

𝑛=1 ,       
(6) 

 

Definition 1. The Flint-Hills-López Series Representation 

The Flint-Hills-López series representation for ∑ 𝑐𝑠𝑐2(𝑛) 

𝑛3
∞
𝑛=1  

is given by subtracting two convergent series 𝑆𝐿1
 and 𝑆𝐿2

 
derived from the analysis of the Adamchik-Srivastava 
Summation Formula,  ∑

𝑡𝑚 

𝑚2 𝜁(2𝑚) =∞
𝑚=1

𝑙𝑜𝑔 (𝜋√𝑡 𝑐𝑠𝑐 (𝜋√𝑡 )), when 𝑡 =
1

𝜋2 𝑒−2𝑐𝑠𝑐2(𝑛), such that 𝑆𝐿1
 

converges to 𝜏 = 30.326256 … and 𝑆𝐿2
converges to 𝜎 =

0.0118355169 ….  
  

 𝑆𝐿1
= ∑ 𝑙𝑜 𝑔  { 𝑐𝑠𝑐(𝑒−𝑐𝑠𝑐2(𝑛)) } 𝑛−3∞

𝑛=1 = 𝜏 = 30.326256 …, 
 

𝑆𝐿2
= ∑

1

𝑛3
∑

 𝑒−2𝑚 𝑐𝑠𝑐2(𝑛)

(𝑚 𝜋𝑚)2
∞
𝑚=1  𝜁(2𝑚)∞

𝑛=1 = 𝜎 =

0.01183551. .., 
 
∑

𝑐𝑠𝑐2(𝑛) 

𝑛3
∞
𝑛=1 = 𝑆𝐿1

− 𝑆𝐿2
= 𝜏 − 𝜎 = 30.3144204831 …. 

 
 The result in Definition 1 meets a very close value of 

convergence statistically proved by [3], and seen in various 
plots of series expansion for the Flint Hills series, e.g., in the 
document of Wolfram MathWorld, [2], where that series 
seemed to converge to a very similar number 30.314 …, which 
is the result of the partial sums calculated for the Flint Hills 
series, e.g., up to 𝑛 = 104.  Moreover, convergence on 𝑆𝐿1

 is 
established definitely because there is a positive function 

 𝛼(𝑥) =
𝑙𝑜 𝑔  𝑐𝑠𝑐(𝑒−𝑐𝑠𝑐2(𝑥) )

𝑥3 = 𝑙𝑜 𝑔  { 𝑐𝑠𝑐(𝑒−𝑐𝑠𝑐2(𝑥)) } 𝑥−3raised 

on 𝑥 ∈  [1, ∞) such that the area  𝐴 = ∫ 𝛼(𝑥)𝑑𝑥
∞

1
  under the 

curve 𝛼(𝑥) is positive and finite which respects the criterion 
of boundedness applied to the series 𝑆𝐿1

. Fig.1 shows that the 
area under the curve naturally vanishes slowly in the infinite, 
despite the fact that there are some sharp spikes of 
discontinuity related to 𝛼(𝑥). Fig. 2 illustrates the gradual 
decrease of 𝛼(𝑥) along the x-axis, indicating its slow 
vanishing as 𝑥 increases. The value of 𝛼(𝑥) diminishes 
without approaching infinity. 
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Figure 1. Plot of the area under the curve α(x) vanishing slowly along 
the axis x. α(x) contains ‘spikes’ of infinite +∞ at the first non-
integer values of x. However, the respective sequence α(n) is not 
divergent on the integers x=n, n=1,2,3... 

 
Being 𝛼(𝑥0 𝑑𝑖𝑠𝑐𝑜𝑛𝑡) = ∞. Thus, these points 𝑥0 𝑑𝑖𝑠𝑐𝑜𝑛𝑡  

belong to the real function 𝛼(𝑥) and do not appear in the 
sequence 𝛼(𝑛) = 𝑙𝑜 𝑔  { 𝑐𝑠𝑐(𝑒−𝑐𝑠𝑐2(𝑛)) } 𝑛−3 , which is a 
verifiable fact if tested in 𝑛. Moreover, Fig 3 let us depict that 
phenomenon. Therefore, the bars or samples 𝛼(𝑛) =

{𝛼(1),𝛼(2),𝛼(3), … } are always positive, thanks to the natural 
logarithm and its argument elevated at 𝑛−3, and also each 
𝛼(𝑛) is bounded which means that 𝛼(𝑛) is reducing its size 
slowly when 𝑛 grows and is vanishing in the infinite as the 
expected behavior for a convergent series that represents the 
main contribution of the Flint Hills series. It is clear, based on 
the numerical data and plots, that there are zones of the total 
shadow area under the curve 𝛼(𝑥), in Fig.1, that are close to 
certain spikes of infinite value and to other lower sizes but it 
does not mean that the area between such points was 
unbounded or infinite. The sequence 𝛼(𝑛) =

𝑙𝑜 𝑔  { 𝑐𝑠𝑐(𝑒−𝑐𝑠𝑐2(𝑛)) } 𝑛−3 is established in  Lemma 1. 

Lemma 1. The sequence { 𝛼(𝑛) =

𝑙𝑜 𝑔  { 𝑐𝑠𝑐(𝑒−𝑐𝑠𝑐2(𝑛)) } 𝑛−3 
} associated to the natural 

numbers, 𝑁, i.e., 𝑛 = 1, 2, 3, …, achieves the definition of 

bounded sequences given by:  

There exists a real number 𝑀 = 1.8597 … such that |𝛼(𝑛)| ≤
𝑀 for all natural numbers 𝑁, | 𝑛 = 1, 2, 3, … . Thus, the 

sequence is bounded as 0 < |𝛼(𝑛)| ≤ 1.8597 … being 𝛼(𝑛) 

always positive. 

Proof. The plot of every sample 𝛼(𝑛) = {𝛼(1),𝛼(2),𝛼(3), … } 

 
Figure 2 Plot of the curve α(x) vanishing slowly along the axis x. The 

spikes are decreasing (non-infinite) as x grows. 
 

, with  𝛼(𝑛) = 𝑙𝑜 𝑔  { 𝑐𝑠𝑐(𝑒−𝑐𝑠𝑐2(𝑛)) } 𝑛−3, shows a slow-
damped behavior regarding 𝛼(𝑛). The highest visible sample 
of the whole set is 𝛼(3) = 𝑀 = 1.8597 … while the rest of the 
samples are less than 𝛼(3) = 𝑀.  However, when 𝑛 → ∞  the 
samples are vanishing in the infinite if their height is 
computed and analyzed, so the natural tendency of the 
sequence 𝛼(𝑛) is being bound, there will not be divergence as 
𝑛 increases! However, the process of achieving the number 
𝜏 = 30.326256 … associated to 𝑆𝐿1 demands calculating 
several initial samples distributed over the first thousands of 
integers from 𝑛 = 1 to 𝑛 = 2200 approximately. The 
algorithms can easily compute the first 2200 samples or even 
more, like 10000 samples, in less than 1 minute using efficient 
software like Wolfram Alpha, [8], and prove that the main 
values of the sequence 𝛼(𝑛) used in the summation to 
compute 𝑆𝐿1

, i.e., the set of blue bars in Fig.3 in a plot of 
Matlab, [9], are enough to calculate 𝜏 = 30.326256 … which 
is the main number that supports the total sum to compute the 
Flint Hills series.  Thus, samples for higher  𝑛 > 2200  will 
contribute by adding more precise decimals to 𝜏 =
30.326256 …  but the integer part 30 will remain as the main 
value in that series.    

Figure 3. The first 50 samples of α(n) in Matlab. The sequence is decreasing 
but there are significantly smaller samples further than n=50 whose 
contribution is relevant to this analysis. 𝛼(𝑥) is stable and perfectly 
computable within 2200 samples. 
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I share the simple line of code in WolframAlpha, [8], 
written in natural language, that everybody can use to verify 
convergence for 𝑆𝐿1

= 𝜏 = 30.326256 … by the code 
 
 Sum[1/(n^3)log(csc(1/exp(csc(n)^2))), {n,1,4200}], or also 
 
 sum (1/(n^3)*log(csc(1/exp(csc(n)^2)))) from n=1 to 4200, 
 

of course, the number of samples can be adjusted, e.g., just 
replacing 4200 with higher numbers like 9000 or 10000 to 
improve precision. Moreover, other kinds of software 
packages can prove the same computed results if their 
precision is well established. Fig. 4 shows a typical routine 
online in WolframAlpha, [8], that let us accomplish the value 
of 𝑆𝐿1

= 𝜏 = 30.326256 … 
 

 
Figure 4. Computation of the main series 𝑆𝐿1

 which converges to 𝜏 =

30.326256 … 

 

Lemma 2. The series 𝑆𝐿2 converges notoriously quickly thanks 

to the exponential 𝑒−2𝑚 𝑐𝑠𝑐2(𝑛) which decays rapidly and also 

because of the damping effect of (𝑚 𝜋𝑚)2 in the denominator, 

i.e., 
 𝑒−2𝑚 𝑐𝑠𝑐2(𝑛)

(𝑚 𝜋𝑚)2  = 
 1

(𝑚 𝜋𝑚)2 𝑒2𝑚 𝑐𝑠𝑐2(𝑛)
 that decays quickly 

without infinities. Therefore, convergence for  𝑆𝐿2
=

∑
1

𝑛3  ∑
 𝑒−2𝑚 𝑐𝑠𝑐2(𝑛)

(𝑚 𝜋𝑚)2
∞
𝑚=1  𝜁(2𝑚)∞

𝑛=1  is given by  𝜎 =

0.0118355169 …. 𝑆𝐿2 = ∑
1

𝑛3  ∑
 𝑒−2𝑚 𝑐𝑠𝑐2(𝑛)

(𝑚 𝜋𝑚)2
∞
𝑚=1  𝜁(2𝑚)∞

𝑛=1  is 

called the Minor Zeta Flint-Hills-Lopez series. 

Proof. The Lemma 2 is proved numerically by computing 
the first integers 𝑛 = 1, 2, 3, 4 when 𝑚 is great enough, e.g., 
𝑚 = 8000 , to be considered as 𝑚 → ∞ within the inner large 

partial sum given by ∑
 𝑒−2𝑚 𝑐𝑠𝑐2(𝑛)

(𝑚 𝜋𝑚)2
∞
𝑚=1  𝜁(2𝑚) and after 

exposing the fact that the expansion of the sample for 𝑛 > 4 is 
definitely very close to zero. The code in Wolfram Alpha is 
provided for each case of 𝑛 = 1, 2, 3, 4 as follows 

 

For  𝑛 = 1  →   
1

𝑛3  ∑
 𝑒−2𝑚 𝑐𝑠𝑐2(𝑛)

 (𝑚 𝜋𝑚)2
∞
𝑚=1  𝜁(2𝑚) ≅ 0.00989887, 

i.e., 

∑
 1

(13) 𝑒2𝑚 𝑐𝑠𝑐2(1)(𝑚 𝜋𝑚)2
8000
𝑚=1  𝜁(2𝑚) ≅ 0.00989887, with code 

 
Sum[Divide[ζ\(40)2m\(41)Power[1,-

3],Square[\(40)m*Power[π,m]\(41)]exp\(40)2*m*Square[\(40

)csc\(40)1\(41)\(41)]\(41)],{m,1,8000}] 

 

For   𝑛 = 2;  ∑
 1

(23) 𝑒2𝑚 𝑐𝑠𝑐2(2)(𝑚 𝜋𝑚)2
8000
𝑚=1  𝜁(2𝑚) ≅

0.00185733,  with code 
 
Sum[Divide[ζ\(40)2m\(41)Power[2,-

3],Square[\(40)m*Power[π,m]\(41)]exp\(40)2*m*Square[\(40

)csc\(40)2\(41)\(41)]\(41)],{m,1,8000}] 

 

For 𝑛 = 3;  ∑
 1

(33) 𝑒2𝑚 𝑐𝑠𝑐2(3)(𝑚 𝜋𝑚)2
8000
𝑚=1  𝜁(2𝑚) ≅  0,  with 

code 
 

Sum[Divide[ζ\(40)2m\(41)Power[3,-

3],Square[\(40)m*Power[π,m]\(41)]exp\(40)2*m*Square[\(40

)csc\(40)3\(41)\(41)]\(41)],{m,1,8000}] 

 
For 𝑛 = 4;  ∑

 1

(43) 𝑒2𝑚 𝑐𝑠𝑐2(4)(𝑚 𝜋𝑚)2
8000
𝑚=1  𝜁(2𝑚) ≅

0.0000793169,  with code 
 
Sum[Divide[ζ\(40)2m\(41)Power[4,-

3],Square[\(40)m*Power[π,m]\(41)]exp\(40)2*m*Square[\(40

)csc\(40)4\(41)\(41)]\(41)],{m,1,8000}] 

 

WolframAlpha starts calculating successive values 
practically equal to zero from n=5 on as seen in Fig.5. The 
code for the next integers n=5 and n=6 is available below 

 
Sum[Divide[ζ\(40)2m\(41)Power[5,-

3],Square[\(40)m*Power[π,m]\(41)]exp\(40)2*m*Square[\(40

)csc\(40)5\(41)\(41)]\(41)],{m,1,8000}] 

 

 Sum[Divide[ζ\(40)2m\(41)Power[6,-

3],Square[\(40)m*Power[π,m]\(41)]exp\(40)2*m*Square[\(40

)csc\(40)6\(41)\(41)]\(41)],{m,1,8000}] 

 

Figure 5. Computation of 1

𝑛3
∑

 𝑒−2𝑚 𝑐𝑠𝑐2(𝑛)

 (𝑚 𝜋𝑚)2
∞
𝑚=1  𝜁(2𝑚) ≈ 0 for 𝑛 = 5 

and 𝑛 = 6 via Wolfram Alpha. 
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The sum for 𝑆𝐿2 is 𝜎 ≈ 0.00989887 + 0.00185733 + 0 +

0.0000793169 + 0 + 0 … ≈ 0.0118355169. Therefore, 
𝑆𝐿2 is smaller than 𝑆𝐿1 , yet it remains a significant value in 
achieving convergence for the Flint Hills series. 

III.THE APÉRY CONSTANT, 𝜁(3), AND ITS RELATIONSHIP WITH 

THE FLINT HILL SERIES AND THE SERIES ∑
𝑐𝑜𝑡2(𝑛)

𝑛3𝑛≥1  

I derive a second new representation for the Flint Hills 
series based on the well-known fundamental trigonometric 
identity, [10], as below 

 
𝑐𝑠𝑐2(𝜃) = 1 + 𝑐𝑜𝑡2(𝜃),                             (7) 

                                                                       
which is easily inferred from the Pythagorean trigonometric 

identity 𝑠𝑖𝑛2(𝜃) + 𝑐𝑜𝑠2(𝜃) = 1. Clearly, (7) implies that 
every real value of 𝜃 is possible, even an integer 𝜃 = 𝑛, with 
𝑛 = 1, 2, 3, …. Thus, I notice that the following version of (7) 

  
𝑐𝑠𝑐2(𝑛) − 𝑐𝑜𝑡2(𝑛) = 1,                        (8)                                                                

 
can be modified by multiplying both sides of (8) by 1

𝑛3 as 
follows 
 

𝑐𝑠𝑐2(𝑛)

𝑛3 −
𝑐𝑜𝑡2(𝑛)

𝑛3 =
1

𝑛3,                          (9) 
                                                                                

obviously with 𝑛 ≠ 0 within this context. Then, I let {𝑐𝑠𝑐2(𝑛)

𝑛3 ∶

 𝑛 ≥ 1} be the sequence related to the Flint Hills series 
∑

𝑐𝑠𝑐2(𝑛)

𝑛3𝑛≥1  and {
𝑐𝑜𝑡2(𝑛)

𝑛3 ∶  𝑛 ≥ 1} a new sequence derived 

from the second term 𝑐𝑜𝑡2(𝑛)

𝑛3  seen on the left side of (9). 
Therefore, I establish a relevant convergent series given by 
 

∑
𝑐𝑜𝑡2(𝑛)

𝑛3𝑛≥1 ,                                (10) 
                                                                                   
and also the notorious Apéry's constant, 𝜁(3), given by the 
definition of the sequence { 1

𝑛3 ∶  𝑛 ≥ 1} 
 

∑
1

𝑛3𝑛≥1  = 𝜁(3).                          (11)          
                                                                 
         I combine (10) and (11), for all integers 𝑛 ≥ 1, to yield a 
valid relationship that involves the Flint Hills series and the 
proposed series (10) and (11) within a never seen previous 
scenario of convergence for this unsolved problem in 
mathematical analysis. 

Definition 2. The Pythagorean-Flint-Hills series 

representation is defined by  

               ∑
𝑐𝑠𝑐2(𝑛)

𝑛3𝑛≥1  −  ∑
𝑐𝑜𝑡2(𝑛)

𝑛3𝑛≥1  = 𝜁(3),            (12)                                                           

where ∑
𝑐𝑠𝑐2(𝑛)

𝑛3𝑛≥1  is the Flint Hills series, ∑
𝑐𝑜𝑡2(𝑛)

𝑛3𝑛≥1  
converges to a finite value 𝜑, and 𝜁(3) is called the Apéry 
constant, the value of the Riemann zeta function at 3 or 

𝜁(3) =
1.202056903159594285399738161511449990 …., which 
has multiple mathematical representations. 

   Lemma 3. The series  ∑
𝑐𝑜𝑡2(𝑛)

𝑛3𝑛≥1 = 𝜑 = 𝜏 − 𝜎 − 𝜁(3) ≈

30.326256 − 0.0118355169 − 1.2020569 ≈
29.1123635831.  

 
Proof. A direct proof is involving Definition 1, Lemma 1, and 
Lemma 2 which leads to calculating immediately such value of 
convergence 𝜑 ≈ 29.1123635831. However, a second 
approach is to find a new convergent series representation for 
∑

𝑐𝑜𝑡2(𝑛)

𝑛3𝑛≥1  using the relationship given by (1) and 

establishing  𝑡 =
1

𝜋2 𝑒−2𝑐𝑜𝑡2(𝑛) as follows 
 
 Let 𝑡 =

1

𝜋2 𝑒−2𝑐𝑜𝑡2(𝑛) be replaced in the expression 
 
 ∑ 𝑡𝑚 

𝑚2 𝜁(2𝑚) = 𝑙𝑜𝑔 (𝜋√𝑡 𝑐𝑠𝑐 (𝜋√𝑡 ))∞
𝑚=1  

  

∑
𝑒−2𝑚 𝑐𝑜𝑡2(𝑛) 

𝜋2𝑚𝑚2 𝜁(2𝑚) =∞
𝑚=1

                                 𝑙𝑜𝑔 (𝜋√
1

𝜋2 𝑒−2𝑐𝑜𝑡2(𝑛) 𝑐𝑠𝑐 (𝜋√
1

𝜋2 𝑒−2𝑐𝑜𝑡2(𝑛))), 

 
then rules of algebra lead to get  
 

∑
𝑒−2𝑚 𝑐𝑜𝑡2(𝑛) 

𝜋2𝑚𝑚2 𝜁(2𝑚) = −𝑐𝑜𝑡2(𝑛)  + 𝑙𝑜𝑔 𝑐𝑠𝑐 (𝑒−𝑐𝑜𝑡2(𝑛))∞
𝑚=1 ,  

 
dividing by 𝑛3 in both sides as shown below 
 
1

𝑛3
∑

𝑒−2𝑚 𝑐𝑜𝑡2(𝑛) 

𝜋2𝑚𝑚2 𝜁(2𝑚) = −
1

𝑛3 𝑐𝑜𝑡2(𝑛)  +∞
𝑚=1

                                                                         
1

𝑛3 𝑙𝑜𝑔 𝑐𝑠𝑐 (𝑒−𝑐𝑜𝑡2(𝑛)), 
and just establishing the sum  
 

∑
1

𝑛3  ∑
𝑒−2𝑚 𝑐𝑜𝑡2(𝑛) 

𝜋2𝑚𝑚2 𝜁(2𝑚) = − ∑
1

𝑛3 𝑐𝑜𝑡∞
𝑛=1

2
(𝑛)  +∞

𝑚=1
∞
𝑛=1

                                                               ∑
1

𝑛3 𝑙𝑜𝑔 𝑐𝑠𝑐 (𝑒−𝑐𝑜𝑡2(𝑛))∞
𝑛=1 , 

which leads to represent 
  
∑

𝑐𝑜𝑡2(𝑛)

𝑛3
∞
𝑛=1 = ∑

1

𝑛3 𝑙𝑜𝑔 𝑐𝑠𝑐 (𝑒−𝑐𝑜𝑡2(𝑛))∞
𝑛=1 −

                                      ∑
1

𝑛3
∑

𝑒−2𝑚 𝑐𝑜𝑡2(𝑛) 

𝜋2𝑚𝑚2 𝜁(2𝑚)∞
𝑚=1

∞
𝑛=1 ,      (13)  

                                                
where ∑

1

𝑛3 𝑙𝑜𝑔 𝑐𝑠𝑐 (𝑒−𝑐𝑜𝑡2(𝑛))∞
𝑛=1 ≈ 29.20304786 based on 

Wolfram Alpha by the code indicated below 
sum (1/(n^3)*log(csc(1/exp(cot(n)^2)))) from n=1 to 9000 
 
, and the expression 
 

 ∑ 1

𝑛3
∑

𝑒−2𝑚 𝑐𝑜𝑡2(𝑛) 

𝜋2𝑚𝑚2 𝜁(2𝑚)∞
𝑚=1

∞
𝑛=1 ≈ 0.073615 +

0.0138581 + 0 + 0.000587 + 0 … ≈ 0.0880601. Therefore, 
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as a result 
 
∑

𝑐𝑜𝑡2(𝑛)

𝑛3 ≈ 29.20304786 − 0.0880601 ≈ 29.11498776∞
𝑛=1  

which is very close to 𝜑 ≈ 29.1123635831 

Definition 3. The López Flint-Hills representation involving 

the Apéry constant is given by the relations 

 
𝜁(3) =  ∑

𝑐𝑠𝑐2(𝑛)

𝑛3𝑛≥1  −  ∑
𝑐𝑜𝑡2(𝑛)

𝑛3𝑛≥1  ,   
 

 𝜁(3) = ∑
𝑙𝑜 𝑔  𝑐𝑠𝑐(𝑒−𝑐𝑠𝑐2(𝑛) )

𝑛3 −∞
𝑛=1

 ∑
1

𝑛3  ∑
 𝑒−2𝑚 𝑐𝑠𝑐2(𝑛)

(𝑚 𝜋𝑚)2
∞
𝑚=1  𝜁(2𝑚)∞

𝑛=1  

− ∑
1

𝑛3 𝑙𝑜𝑔 𝑐𝑠𝑐 (𝑒−𝑐𝑜𝑡2(𝑛))∞
𝑛=1 +∑

1

𝑛3
∑

𝑒−2𝑚 𝑐𝑜𝑡2(𝑛) 

(𝑚 𝜋𝑚)2 𝜁(2𝑚)∞
𝑚=1

∞
𝑛=1  

 
which exposes a fascinating result because of the difference 
between the Flint Hills series and ∑

𝑐𝑜𝑡2(𝑛)

𝑛3𝑛≥1  is, in fact, the 

Apéry constant, and  ∑
𝑐𝑠𝑐2(𝑛)

𝑛3𝑛≥1  and ∑
𝑐𝑜𝑡2(𝑛)

𝑛3𝑛≥1  are two 
convergent series, remarkable findings that had not been 
discovered until the present paper. Moreover, I highlight the 
fact that even if both series had diverged, the expression for 
𝜁(3) would have respected also nature for raising the Apéry 
constant. Therefore, the Flint Hills series is written as 
 

∑
𝑐𝑠𝑐2(𝑛)

𝑛3

𝑛≥1

= 𝜁(3) + ∑
1

𝑛3
𝑙𝑜𝑔 𝑐𝑠𝑐 (𝑒−𝑐𝑜𝑡2(𝑛))

∞

𝑛=1

 

 

− ∑
1

𝑛3
∑

𝑒−2𝑚 𝑐𝑜𝑡2(𝑛) 

(𝑚 𝜋𝑚)2
𝜁(2𝑚)

∞

𝑚=1

∞

𝑛=1

 

  
                                ≈ 30.3144204831.                              

(14) 

IV. THE NEW UPPER BOUND FOR THE IRRATIONALITY 

MEASURE OF 𝜋 IS GIVEN BY 𝜇(𝜋) ≤
 5

 2
  

    In [11], the author revised the matter of whether the Flint 
Hills series converges or not and pointed out the article of [4], 
who connected this question to the irrationality measure of 𝜋, 
that 𝜇(𝜋) >

 5

 2
 would imply divergence of the Flint-Hills series 

and 𝜇(𝜋) <
 5

 2
 convergence. Moreover, [11], showed that 

convergence would imply that 𝜇(𝜋) ≤
 5

 2
 , i.e., 𝜇(𝜋) ≤ 2.5. 

Therefore, I have proved that the irrationality measure of π is 
less than or equal to 2.5, i.e., 𝜇(𝜋) ≤ 2.5, based on the finding 
of the relationships (5), (6) or Definition 1, Lemma 1 and 

Lemma 2. Moreover, in the case where 𝑢 = 3 and 𝑣 = 2 for 
the Flint-Hills series, i.e., in ∑

𝑐𝑠𝑐𝑣(𝑛) 

𝑛𝑢
∞
𝑛=1 = ∑

𝑐𝑠𝑐2(𝑛) 

𝑛3
∞
𝑛=1 , 

Meiburg concluded that this sum converges whenever 𝜇(𝜋) <
 3+√3

 2
≅ 2.366. Therefore, my finding of a new convergent 

representation for the Flint Hills series lets conclude the 
veracity of Corollary 4 of [4], textually 

 

Corollary 4. If the Flint Hills series, ∑
𝑐𝑠𝑐2(𝑛) 

𝑛3
∞
𝑛=1 , 

converges, then 𝜇(𝜋) ≤
 5

 2
. 

Proof. Convergence of ∑
𝑐𝑠𝑐2(𝑛) 

𝑛3
∞
𝑛=1  implies that 

𝑙𝑖𝑚
𝑁→∞

1

𝑛3𝑠𝑖𝑛2(𝑛)
= 0 and thus by Corollary 3, 𝜇(𝜋) ≤

 5

 2
. 

 
Corollary 3. For positive real numbers u and v, 

 

1. If the sequence 
1

𝑛𝑢|𝑠𝑖𝑛𝑣(𝑛)|
 converges, then 𝜇(𝜋) ≤ 1 +

 𝑢

 𝑣
; 

2. If the sequence 
1

𝑛𝑢|𝑠𝑖𝑛𝑣(𝑛)|
 diverges, then 𝜇(𝜋) ≥ 1 +

 𝑢

 𝑣
; 

 

V. MODIFYING THE LAST KNOWN UPPER BOUND FOR THE 
IRRATIONALITY MEASURE OF 𝜋: 𝜇(𝜋) < 7.6063 … NEW 

IMPLICATIONS DERIVED FROM 𝜇(𝜋) ≤ 2.5 
 The best currently known upper bound 𝜇(𝜋) < 7.6063 … 

was obtained in 2008 by [5], now, thanks to my finding in this 
article the new upper bound can be established as 𝜇(𝜋) ≤ 2.5. 
In the references, by Theorem 2, [5], Salikhov’s bound implies 
that the sequence  1

𝑛𝑢|𝑠𝑖𝑛 (𝑛)|𝑣 converges to zero as soon as 1 +
 𝑢

 𝑣
> 7.6063 … Therefore, the new perspectives based on my 

finding are focused on solving particular cases for the pairs 
(𝑢, 𝑣) = (7, 1), (14, 2), (20, 3), and for other higher cases, and 
to prove that the series ∑ 1

𝑛𝑢|𝑠𝑖𝑛 (𝑛)|𝑣
∞
𝑛=1  converges for (𝑢, 𝑣) =

(8, 1), (15, 2), (21, 3), etc. In the discussion section of this 
paper, I provide perspectives and the direction of this work for 
the unsolved cases related to the pairs (𝑢, 𝑣). Positive and 
bounded sequences derived from the Adamchik-Srivastava 
formula could be combined with my proposal to define a 
criterion for all the pairs (𝑢, 𝑣) and establish an important 
branch in the calculus of series. Another important implication 
related to the recent finding for the Flint Hills series and 
𝜇(𝜋) ≤ 2.5 is provided by [12], in Researchgate, who exposes 
in an interesting discussion that “... as 𝜋 is just a ratio of 

circumference to the square of the radius, then it would mean 

the continuity or integrability of the 1-D (one dimensional) 

surface area of the circle is actually a lot smaller than we 

think for a unit circle.”  This implication has been proved 
based on the current finding of this article and considered in 
the discussion section as well. 

VI. GENERALIZATION OF THE FLINT HILLS SERIES WITHIN THE 
COMPLEX DOMAIN: THE COMPLEX FLINT-HILLS-LÓPEZ SERIES  
 I establish the Complex Flint-Hills-López Series, Ƚ𝑧(𝛽), as 
follows 
 

Ƚ𝑧(𝛽) ∶= ∑
𝑐𝑠𝑐2(𝑛 + 𝑖𝛽)

𝑛3
∞
𝑛=1 ,                            (15) 

                                                                                                                                                                                                     
where 𝛽 is any given real number and 𝑖 = √−1. Moreover, the 
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original Flint Hills series is evaluated when 𝛽 = 0, i.e., 
Ƚ𝑧(0) = 𝜏 − 𝜎 = 30.3144204831 …  as proved before. 
        In this paper, I derive a particular expression for  Ƚ𝑧(𝛽), 
𝛽 ≠ 0, by using the 𝑞-series, [13], for the cotangent function 
𝑐𝑜𝑡(𝑧), with 𝑞 = 𝑒𝑖𝑧, defined below 
 

𝑐𝑜𝑡(𝑧) = −𝑖 − 2𝑖 ∑ 𝑞2𝑘∞
𝑘=1 = −𝑖 − 2𝑖 ∑ 𝑒2𝑖𝑘𝑧∞

𝑘=1 ,          (16) 
                                                                                                                
then, I calculate the first derivative of 𝑐𝑜𝑡(𝑧) and also for its 
𝑞-series with respect to 𝑧  
 

𝑑(𝑐𝑜𝑡(𝑧))

𝑑𝑧
= −𝑐𝑠𝑐2(𝑧) = −𝑖

𝑑(1)

𝑑𝑧
− 2𝑖

𝑑( ∑ 𝑒2𝑖𝑘𝑧∞
𝑘=1  )

𝑑𝑧
=

−2𝑖 ∑
𝑑

𝑑𝑧
(𝑒2𝑖𝑘𝑧)∞

𝑘=1 = 4 ∑ 𝑘𝑒2𝑖𝑘𝑧∞
𝑘=1 =  

4 𝑒2𝑖𝑧

(1−𝑒2𝑖𝑧)2,       (17) 

 
in the mathematical references is already known the sum 

∑ 𝑘𝑒2𝑖𝑘𝑧∞
𝑘=1  =

4 𝑒2𝑖𝑧

(1−𝑒2𝑖𝑧)2; a simple computation on 
WolframAlpha, helps to verify it. Thus, I use (17) to represent 
𝑐𝑠𝑐2(𝑛+ 𝑖𝛽)

𝑛3  In the case of the Flint-Hills-López Series Ƚ𝑧( 𝛽) 
when 𝑧 = 𝑛 +  𝑖𝛽   
 

 𝑐𝑠𝑐2(𝑛+𝑖𝛽)

𝑛3 = −4
𝑒2𝑖(𝑛+ 𝑖𝛽)

𝑛3(1−𝑒2𝑖(𝑛+ 𝑖𝛽))2 = −4
𝑒2𝑖𝑛 𝑒−2𝛽

𝑛3(1−𝑒2𝑖𝑛 𝑒−2𝛽)2 =

−4
𝑒2𝑖𝑛 𝑒2𝛽

𝑛3(𝑒2𝛽−𝑒2𝑖𝑛 )2 = −4
𝑒2𝑖𝑛 𝑒2𝛽

𝑛3(𝑒2𝑖𝑛−𝑒2𝛽 )2 ,                                 (18) 
 

Ƚ𝑧(𝛽) = ∑
𝑐𝑠𝑐2(𝑛+𝑖𝛽) 

𝑛3
∞
𝑛=1 = −4 ∑  ∞

𝑛=1
𝑒2𝑖𝑛 𝑒2𝛽

𝑛3(𝑒2𝑖𝑛−𝑒2𝛽 )2 =

−4𝑒2𝛽  ∑  ∞
𝑛=1

𝑒2𝑖𝑛 

𝑛3(𝑒2𝑖𝑛−𝑒2𝛽 )2.                                                (19)    
 

No singularities are originating from the denominator of the 
addends of (19) because 𝑛3 ≠  0 and 𝑒2𝑖𝑛 − 𝑒2𝛽  ≠  0 for 
every n > 0. Moreover, a trick to evaluate (19) is just to 

observe that if 𝑞 = 𝑒2𝑖𝑛 , then 𝑞 

(𝑞−𝑒2𝛽 )2 =
𝑞

𝑒4𝛽 +
2𝑞2

𝑒6𝛽 +
3𝑞3

𝑒8𝛽 +

4𝑞4

𝑒10𝛽 + ⋯, algebraically evidenced in  
 

 𝑒2𝑖𝑛 

𝑛3(𝑒2𝑖𝑛−𝑒2𝛽 )2 =
𝑞 

𝑛3(𝑞−𝑒2𝛽 )2 =
𝑞

𝑛3𝑒4𝛽 +
2𝑞2

𝑛3𝑒6𝛽 +
3𝑞3

𝑛3𝑒8𝛽 +

4𝑞4

𝑛3𝑒10𝛽 + ⋯,                                                                (20) 
as a result, I establish Ƚ𝑧(𝛽) as below 

Ƚ𝑧(𝛽) = −4𝑒2𝛽  ∑  

∞

𝑛=1

{
𝑞

𝑛3𝑒4𝛽
+

2𝑞2

𝑛3𝑒6𝛽
+

3𝑞3

𝑛3𝑒8𝛽
+ ⋯ }

= −4𝑒2𝛽{∑
𝑞

𝑛3𝑒4𝛽

∞

𝑛=1

+ ∑
2𝑞2

𝑛3𝑒6𝛽
+ ∑

3𝑞3

𝑛3𝑒8𝛽
 

∞

𝑛=1

+ ⋯ 

∞

𝑛=1

} 

 = −4𝑒2𝛽{
1

𝑒4𝛽  ∑
𝑞

𝑛3 +
2

𝑒6𝛽  ∑
𝑞2

𝑛3 +
3

𝑒8𝛽
∑

𝑞3

𝑛3 ∞
𝑛=1 + ⋯ ∞

𝑛=1 }∞
𝑛=1 . 

(21) 
 

Particularly, in the next step, I prove that each of the sums 

given by ∑
𝑞𝑘

𝑛3 ∞
𝑛=1 in (21), 𝑘 = 1, 2, 3, …, can be computed 

using the polylogarithm 𝐿𝑖3(𝑒𝑖2𝑘), with 𝑘 = 1, 2, 3..., because 
the definition of 𝐿𝑖𝑠(𝑧), [14], is 

 
𝐿𝑖𝑠(𝑧) = ∑ 𝑛−𝑠∞

𝑛=1 𝑧𝑛,                         (22)                                                                                                                
 
and I just replace 𝑠 = 3 and 𝑧 = 𝑞 = 𝑒2𝑖𝑘, with 𝑘 = 1, 2, 3, …, 
in order to get 
  

   𝐿𝑖3(𝑒2𝑖𝑘) = ∑ 𝑛−3∞
𝑛=1 (𝑒2𝑖𝑘)𝑛 = ∑

𝑒2𝑖𝑘𝑛

𝑛3
∞
𝑛=1 .       (23) 

                                                                                           
  I use the relationship (23) to conveniently achieve a 

polylogarithmic expansion of Ƚ𝑧(𝛽) as a never seen additional 
finding within the context of the Flint-Hills series. 

 Thus, the Flint-Hills-López series Ƚ𝑧(𝛽) is equivalent to 
  

 Ƚ𝒛(𝜷) = −𝟒𝒆𝟐𝜷 {
𝟏

𝒆𝟒𝜷  𝑳𝒊𝟑(𝒆𝟐𝒊) +
𝟐

𝒆𝟔𝜷
 𝑳𝒊𝟑(𝒆𝟒𝒊) +

𝟑

𝒆𝟖𝜷
 𝑳𝒊𝟑(𝒆𝟔𝒊) … } =

                    
−𝟒𝒆𝟐𝜷

𝒆𝟒𝜷
∑ 𝒌

𝑳𝒊𝟑(𝒆𝟐𝒊𝒌)

𝒆𝟐𝒌𝜷−𝟐𝜷
∞
𝒌=𝟏 .  

 

Ƚ𝑧(𝛽): =  ∑
𝑐𝑠𝑐2(n+iβ) 

𝑛3 ≡∞
𝑛=1 − 4 ∑ 𝑘

𝐿𝑖3(𝑒2𝑖𝑘)

𝑒2𝑘𝛽
∞
𝑘=1 ,                                  

 
Ƚ𝑧(𝛽): = −4 ∑ 𝑘 𝑒−2𝑘𝛽𝐿𝑖3(𝑒2𝑖𝑘)∞

𝑘=1 ,                       (24) 
 
so I call (24) The López-Flint-Hills Polylogarithmic Series 

Expansion for Ƚ𝑧(𝛽). The equation (24) converges within the 
complex analysis for every real value 𝛽 except zero. However, 
using Definition 1, the complete depicted scenario for the Flint 
Hills is 
 

Ƚ𝑧(𝛽) ∶= {
 𝜏 − 𝜎 = 30.3144204831 … , 𝑖𝑓 𝛽 = 0 

𝑜𝑟
  −4 ∑ 𝑘 𝑒−2𝑘𝛽𝐿𝑖3(𝑒2𝑖𝑘)∞

𝑘=1 , 𝑖𝑓 𝛽 𝑖𝑠 𝑟𝑒𝑎𝑙 
,   (25)     

 

VII. DEFINITION OF Ƚ𝑧(𝛽) BASED ON THE INTEGRAL OF THE 
BOSE-EINSTEIN DISTRIBUTION 

I notice the prevalence of a similar polylogarithm 𝐿𝑖3(𝑒2𝑖𝑘) 
from a general version of the integral of the Bose-Einstein 
distribution that includes the complex argument 𝑒2𝑖𝑘 instead 
of the real version of 𝑒𝜀𝐵 , [15], with 𝜀𝐵 a non-complex 
number,  in some applications of physics, or also a general 
complex number 𝑒𝑧, [16], which is similar to 𝑒2𝑖𝑘 in 𝐿𝑖3(𝑒2𝑖𝑘) 
through the expressions (26) and (27) 

 
 𝐿𝑖𝑠+1(𝑧) =

1

𝛤(𝑠+1)
∫

𝑡𝑠

𝑒𝑡

𝑧
 −1

𝑑𝑡
∞

0
,                 (26) 

                                                                                                     
where 𝑅𝑒(𝑠) > 0. I notice that at the values 𝑠 = 2 and 𝑧 =

𝑒2𝑖𝑘 the Bose-Einstein-like integral leads to represent 
𝐿𝑖3(𝑒2𝑖𝑘) as 
  
𝐿𝑖3(𝑒2𝑖𝑘) =

1

𝛤(2+1)
∫

𝑡2

(
𝑒𝑡

𝑒2𝑖𝑘 −1)
𝑑𝑡

∞

0
=

INTERNATIONAL JOURNAL OF PURE MATHEMATICS 
DOI: 10.46300/91019.2023.10.3 Volume 10, 2023

E-ISSN: 2313-0571 21



 

 

                 
1

𝛤(3)
∫

𝑡2

(𝑒𝑡−2𝑖𝑘 −1)
𝑑𝑡 =

1

2!
∫

𝑡2

(𝑒𝑡−2𝑖𝑘 −1)
𝑑𝑡

∞

0

∞

0
,            (27) 

 
thus, I can establish a correspondence between that definition 
in (27) and the López-Flint-Hills Polylogarithmic Series 

Expansion for Ƚ𝑧(𝛽) 

 

Ƚ𝑧(𝛽) = −4 ∑ 𝑘 𝑒−2𝑘𝛽[
1

2!
∫

𝑡2

(𝑒𝑡−2𝑖𝑘 −1)
𝑑𝑡

∞

0
]∞

𝑘=1 =  

                −2 ∫ 𝑡2∞

0
 ∑ 𝑘

 𝑒−2𝑘𝛽

(𝑒𝑡−2𝑖𝑘 −1)

∞
𝑘=1 𝑑𝑡,                 (28) 

                                             
being (28) the Bose-Einstein-like integral representation of the 

Flints-Hills-López series Ƚ𝑧(𝛽). A careful revision of (28) 
could lead to exploring some links between important 
concepts in physics, e.g., condensate-matter states, behind the 
nature of the Flint-Hills series. For achieving that link, it 
would be necessary to understand if there would be a crucial 
role for the variable 𝑡 in (28) or a modified version of Ƚ𝑧(𝛽) 
within the analysis of physics because it is already known that 
the Bose-Einstein distribution describes the statistical behavior 
of integer spin particles (bosons), [17]. Of course, in this 
paper, I am just opening the door to new possibilities in this 
research. As a resemblance between (28) for the case of Ƚ𝑧(𝛽) 
and the Bose-Einstein distribution for a sys-tem of iden-ti-cal 
bosons, [18], compare (29) to (28) 
 

  ȴ𝑏 =
1

𝑒(𝐸𝑝−𝜇)/𝐾𝐵𝑇−1
,                                (29)                                                                                                                        

 
or also to (30) which is another extended definition of the 
Bose-Einstein distribution, [19], 
 

  𝑃(𝑘) =
𝑘𝑠

𝑒(𝑘−𝜇)−1
,                                (30)  

                                                                                                                            

where 𝑡2

(𝑒𝑡−2𝑖𝑘 −1)
 from (27) is similar to 𝑃(𝑘) at 𝑠 = 2, of 

course, by just switching the name of the variables used, i.e., 𝑘 
by 𝑡, and extending 𝜇 to the imaginary domain as 𝜇 = 2𝑖𝑘. 
This proposal establishes an extraordinary similarity between 
the shape of the distribution given by ȴ𝑏 or 𝑃(𝑘) = 𝑃(𝑡) 
within an unexplored context for the problem of the Flint-Hills 
or its generalizations. For clarifying the terms in (29) and (30), 
here ȴ𝑏 is the av-er-age num-ber of bosons in a sin-gle-
par-ti-cle state with sin-gle-par-ti-cle en-ergy 𝐸𝑝. Fur-ther 𝑇 is 
the ab-solute tem-per-a-ture, and 𝐾𝐵 is the Boltz-mann 
con-stant, [18], equal to 1,38065𝑥10−23 J/K. The integral of 
the distribution (30) is related to the Bose-Einstein-like 
integral I have exposed in the current section, as a result below 
  

∫
𝑘𝑠

𝑒(𝑘−𝜇)−1

∞

0
𝑑𝑘 = 𝛤(𝑠 + 1)𝐿𝑖𝑠+1(𝑒𝜇) →  𝑟𝑒𝑠𝑒𝑚𝑏𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 →

𝛤(𝑠 + 1)𝐿𝑖𝑠+1(𝑧) = ∫
𝑡𝑠

𝑒𝑡

𝑧
 −1

𝑑𝑡
∞

0
,               (31) 

and 
 

∫
𝑘2

𝑒(𝑘−𝜇)−1

∞

0
𝑑𝑘 = 𝛤(3)𝐿𝑖3(𝑒𝜇) →  𝑟𝑒𝑠𝑒𝑚𝑏𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 →

𝛤(3)𝐿𝑖3(𝑒2𝑖𝑘) = ∫
𝑡2

𝑒𝑡−2𝑖𝑘 −1
𝑑𝑡

∞

0
.              (32) 

VIII. PROOF OF CONVERGENCE OF THE COOKSON HILLS SERIES 
BASED ON THE ADAMCHIK-SRIVASTAVA SUMMATION 

FORMULA 
 Basically, the proof is similar to the case of the Flint Hills 

series, i.e., it is possible to find two convergent series that are 
bounded and never diverge and lead to represent the Cookson 
Hills series. For that purpose, let 𝑡 =

1

𝜋2 𝑒−2𝑠𝑒𝑐2(𝑛) be replaced 

in ∑
𝑡𝑚 

𝑚2 𝜁(2𝑚) = 𝑙𝑜𝑔 (𝜋√𝑡 𝑐𝑠𝑐 (𝜋√𝑡 ))∞
𝑚=1  because the term 

𝑠𝑒𝑐2(𝑛) appears in the definition of the Cookson Hills series  
∑

𝑠𝑒𝑐2(𝑛)

𝑛3
∞
𝑛=1  and can be modeled as follows 
 

∑
𝑒−2𝑚 𝑠𝑒𝑐2(𝑛) 

𝜋2𝑚𝑚2 𝜁(2𝑚) =∞
𝑚=1

                        𝑙𝑜𝑔 (𝜋√
1

𝜋2 𝑒−2𝑠𝑒𝑐2(𝑛) 𝑐𝑠𝑐 (𝜋√
1

𝜋2 𝑒−2𝑠𝑒𝑐2(𝑛))), 

then, I get 
  

∑
𝑒−2𝑚 𝑠𝑒𝑐2(𝑛) 

𝜋2𝑚𝑚2 𝜁(2𝑚) = −𝑠𝑒𝑐2(𝑛)  + 𝑙𝑜𝑔 𝑐𝑠𝑐 (𝑒−𝑠𝑒𝑐2(𝑛))∞
𝑚=1 .  

 
    Now, divide by 𝑛3 in both sides of the previous expression, 
I obtain 
  
1

𝑛3
∑

𝑒−2𝑚 𝑠𝑒𝑐2(𝑛) 

𝜋2𝑚𝑚2 𝜁(2𝑚) = −
1

𝑛3 𝑠𝑒𝑐2(𝑛)  +∞
𝑚=1

                                                                       
1

𝑛3 𝑙𝑜𝑔 𝑐𝑠𝑐 (𝑒−𝑠𝑒𝑐2(𝑛)),  
and just establishing the sum 
  

∑
1

𝑛3  ∑
𝑒−2𝑚 𝑠𝑒𝑐2(𝑛) 

𝜋2𝑚𝑚2 𝜁(2𝑚) = − ∑
1

𝑛3 𝑠𝑒𝑐∞
𝑛=1

2
(𝑛) +∞

𝑚=1
∞
𝑛=1

                                                             ∑
1

𝑛3 𝑙𝑜𝑔 𝑐𝑠𝑐 (𝑒−𝑠𝑒𝑐2(𝑛))∞
𝑛=1  , 

 
which leads to represent the Cookson-Hills series as follows 
 
∑

𝑠𝑒𝑐2(𝑛)

𝑛3
∞
𝑛=1 = ∑

1

𝑛3 𝑙𝑜𝑔 𝑐𝑠𝑐 (𝑒−𝑠𝑒𝑐2(𝑛))∞
𝑛=1 −

                                    ∑
1

𝑛3
∑

𝑒−2𝑚 𝑠𝑒𝑐2(𝑛) 

𝜋2𝑚𝑚2 𝜁(2𝑚)∞
𝑚=1

∞
𝑛=1 .        (33) 

 
The relationship (33) also converges thanks to the series 
  

𝑆𝐶1
= ∑

1

𝑛3 𝑙𝑜𝑔 𝑐𝑠𝑐 (𝑒−𝑠𝑒𝑐2(𝑛))∞
𝑛=1 ,  

and 𝑆𝐶2
= ∑

1

𝑛3
∑

𝑒−2𝑚 𝑠𝑒𝑐2(𝑛) 

𝜋2𝑚𝑚2 𝜁(2𝑚)∞
𝑚=1

∞
𝑛=1 , being 𝑆𝐶2 the 

Minor Zeta Cookson-Hills-López series. It is practically the 
same methodology used in the scenario of the convergence of 
the Flint Hills series because 𝑠𝑒𝑐2(𝑛) is related to similar 
behavior of abrupt jumps perceived in the trigonometric 
function 𝑐𝑠𝑐2(𝑛). That is why the Adamchik-Srivastava 
summation formula could serve to generalize several cases 
based on trigonometric functions with abrupt nature. 
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Definition 4. The Cookson-Hills-López series 

representation for ∑
𝑠𝑒𝑐2(𝑛) 

𝑛3
∞
𝑛=1  is given by subtracting two 

convergent series 𝑆𝐶1
 and 𝑆𝐶2

 derived from the analysis of 

the Adamchik-Srivastava Summation Formula used 

previously, i.e., (1), 

 

  ∑
𝑡𝑚 

𝑚2 𝜁(2𝑚) = 𝑙𝑜𝑔 (𝜋√𝑡 𝑐𝑠𝑐 (𝜋√𝑡 ))∞
𝑚=1 ,  

 

when 𝑡 =
1

𝜋2 𝑒−2𝑠𝑒𝑐2(𝑛), such that 𝑆𝐶1
 converges to 𝜍 =

42.9960 … and  𝑆𝐶2
converges to 𝜚 ≈ 0.0012. The Cookson 

Hills series obeys the convergent value 𝜍 − 𝜚 = 42.994 …  

      

∑
𝑠𝑒𝑐2(𝑛) 

𝑛3
∞
𝑛=1 = 𝑆𝐶1

− 𝑆𝐶2
= 𝜍 − 𝜚 = 42.994 …, 

where 

𝑆𝐶1
= ∑

1

𝑛3 𝑙𝑜𝑔 𝑐𝑠𝑐 (𝑒−𝑠𝑒𝑐2(𝑛))∞
𝑛=1 = 𝜍 = 42.9960 …,  

𝑆𝐶2
= ∑

1

𝑛3
∑

𝑒−2𝑚 𝑠𝑒𝑐2(𝑛) 

𝜋2𝑚𝑚2 𝜁(2𝑚)∞
𝑚=1

∞
𝑛=1 = 𝜚 ≈ 0.0012. 

 

Lemma 4.  The sequence { 𝜇(𝑛) =  
1

𝑛3 𝑙𝑜𝑔 𝑐𝑠 𝑐 𝑒−𝑠𝑒𝑐2(𝑛)}, 

with 𝑛 = 1, 2, 3, … , is bounded  and achieves the definition 

of bounded sequences given by 

there exists a real number 𝑀 = 38.35821564 … such that 

|𝜇(𝑛)| ≤ 𝑀 for all natural numbers 𝑁, | 𝑛 = 1, 2, 3, …. 

Thus, the sequence is bounded as 0 < |𝜇(𝑛)| ≤
38.35821564 … being 𝜇(𝑛) always positive and 

decreasing. 

 
Proof. The plot, given in Fig.7, of every sample 𝜇(𝑛) =

{𝜇(1),𝜇(2),𝜇(3), … }; | 𝜇(𝑛) = 𝑙𝑜 𝑔  { 𝑐𝑠𝑐(𝑒−𝑠𝑒𝑐2(𝑛)) } 𝑛−3, 
shows a slow-damped behavior regarding  𝜇(𝑛). The highest 
sample of the whole set is the computed value  𝜇(11) = 𝑀 =
38.3582156 … so the rest of the values are decreasing and 
eventually get vanished in the infinite as the value 𝑛 → ∞.  

    The routine in Wolfram Alpha, Fig. 6, computes in less 
than 1 minute for 𝑛 = 9000 samples the expected main value 
seen in the plots of some references like in [6]. Anybody can 
calculate the sum 𝑆𝐶1

 that converges to 𝜍 = 42.9960 … by the 
command line of Natural Language used in Wolfram Alpha 
below 

 
sum (1/(n^3)*log(csc(1/exp(sec(n)^2)))) from n=1 to 9000 
 

 
Figure 6. Computation of the main sum  
 
SC1

= ∑
1

n3
log csc (e−sec2(n))∞

n=1  via Wolfram Alpha. 
 

 
Figure 7. Plot of the bounded sequence μ(n) showing the highest 
values μ(1) = 3.4257... and M = μ(11) = 38.3582.. Cookson Hills 
series. 

Lemma 5.  The series   

𝑆𝐶2
= ∑

1

𝑛3
∑

𝑒−2𝑚 𝑠𝑒𝑐2(𝑛) 

𝜋2𝑚𝑚2 𝜁(2𝑚)∞
𝑚=1

∞
𝑛=1 = 𝜚 ≈ 0.0012 which 

happens because the term  
𝑒−2𝑚 𝑠𝑒𝑐2(𝑛) 

𝜋2𝑚𝑚2  affects quickly the 

nature of convergence causing these series to be bounded and 

finite.  

Proof. The successive partial sums were given by  
1

𝑛3
∑

𝑒−2𝑚 𝑠𝑒𝑐2(𝑛) 

𝜋2𝑚𝑚2 𝜁(2𝑚)∞
𝑚=1  per each 𝑛 = 1, 2, 3, …, show 

behavior in a similar way that in the case of the Flint Hills 
series studied before. The first partial sums can be computed 
to calculate a valid approximate value of convergence given 
by the result 

𝑆𝐶2
≈ 0.000176396 + 2.00992 𝑥 10−7 + 0.00080388 +

0.0000241413 + 0.000178103 + 0.00010237 + ⋯ . +0 +
0 + ⋯ ≈ 0.0012.  

 
As numerical evidence for these partial sums associated to 

𝑆𝐶2
, computing higher samples like, for example, 𝑛 = 100 in 

radians, by the code in Wolfram Alpha given by 
 

Sum[Divide[ζ\(40)2m\(41)Power[100,-

3],Square[\(40)m*Power[π,m]\(41)]exp\(40)2*m*Square[\(40

)sec\(40)100\(41)\(41)]\(41)],{m,1,∞}] 
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make clear the natural tendency of the higher partial sums of 
𝑆𝐶2

to get vanished or practically equal to zero in the infinite, 

𝑛 → ∞, due to the prevalence of  𝑒−2𝑚 𝑠𝑒𝑐2(𝑛) 

𝜋2𝑚𝑚2  that decays easily 
to zero. Therefore, the first one hundred samples between 𝑛 =
1 and 𝑛 = 100 are quiet enough for getting a precise 
approximation of  𝑆𝐶2

 because the series 𝑆𝐶2
=

∑
1

𝑛3
∑

𝑒−2𝑚 𝑠𝑒𝑐2(𝑛) 

𝜋2𝑚𝑚2 𝜁(2𝑚)∞
𝑚=1

∞
𝑛=1  can achieve a quick result on 

convergence but a little slow compared to the Minor Zeta 
Flint-Hills-López series of the Flint Hills series, which is 
quicker to reach partial sums that converge to the effective 
value for that series. Nevertheless, The Minor Zeta Cookson-
Hills-López series 𝑆𝐶2

 has a small contribution 𝜚 ≈ 0.0012 
but must be included; all are consistent with the known plots 
in the references based on the pure expansion of the original 
series, [6]. 

IX. THE APÉRY CONSTANT AND ITS RELATIONSHIP WITH THE 
COOKSON HILL SERIES AND THE CONVERGENT SERIES 

∑
𝑡𝑎𝑛2(𝑛)

𝑛3𝑛≥1  

 I derive a second new representation for the Cookson Hills 
series based on the well known  

 
𝑠𝑒𝑐2(𝜃) = 1 + 𝑡𝑎𝑛2(𝜃),                    (34) 

                                                                                                                          
with an integer 𝜃 = 𝑛,  being 𝑛 = 1, 2, 3, …. I multiply both 

sides of (34) by 1

𝑛3 and arrange (34) as 
                                                 

𝑠𝑒𝑐2(𝑛)

𝑛3 −
𝑡𝑎𝑛2(𝑛)

𝑛3 =
1

𝑛3,                       (35) 
                                                                          

again, 𝑛 ≠ 0, within this context. Then, I let {𝑠𝑒𝑐2(𝑛)

𝑛3 ∶  𝑛 ≥ 1} 
be the sequence related to the Cookson Hills series 
∑

𝑠𝑒𝑐2(𝑛)

𝑛3𝑛≥1  and  {
𝑡𝑎𝑛2(𝑛)

𝑛3 ∶  𝑛 ≥ 1} a new sequence derived 

from the second term 𝑡𝑎𝑛2(𝑛)

𝑛3  seen on the left side of (35). 
Therefore, I establish a convergent series given by 

∑
𝑡𝑎𝑛2(𝑛)

𝑛3𝑛≥1 ,                                     (36)                                                                                    
 
again I get a resembling representation of the Apéry constant 
by the definition below 
 

Definition 5. The López Cookson-Hills representation 

involving the Apéry constant is given by the relations below 

 
 𝜁(3) =  ∑

𝑠𝑒𝑐2(𝑛)

𝑛3𝑛≥1  −  ∑
𝑡𝑎𝑛2(𝑛)

𝑛3𝑛≥1  , 
                                                                                                                  

  𝜁(3) =      ∑
𝑙𝑜 𝑔  𝑐𝑠𝑐(𝑒−𝑠𝑒𝑐2(𝑛) )

𝑛3 −∞
𝑛=1

∑
1

𝑛3  ∑
 𝑒−2𝑚 𝑠𝑒𝑐2(𝑛)

(𝑚 𝜋𝑚)2
∞
𝑚=1  𝜁(2𝑚)∞

𝑛=1  
   

                                           − ∑
1

𝑛3 𝑙𝑜𝑔 𝑐𝑠𝑐 (𝑒−𝑡𝑎𝑛2(𝑛))∞
𝑛=1  

                                            

+ ∑
1

𝑛3
∑

𝑒−2𝑚 𝑡𝑎𝑛2(𝑛) 

(𝑚 𝜋𝑚)2 𝜁(2𝑚)∞
𝑚=1

∞
𝑛=1 . 

 
That representation is not a mystery considering that the 

Pythagorean identities used in this analysis link the 
summations to the Apéry constant 𝜁(3). Therefore, 
∑

𝑠𝑒𝑐2(𝑛)

𝑛3𝑛≥1  can be represented by 
 

∑
𝑠𝑒𝑐2(𝑛)

𝑛3𝑛≥1 = 𝜁(3) + ∑
𝑙𝑜𝑔 𝑐𝑠𝑐 (𝑒−𝑡𝑎𝑛2(𝑛))

𝑛3
∞
𝑛=1       

 

                 − ∑
1

𝑛3
∑

𝑒−2𝑚 𝑡𝑎𝑛2(𝑛) 

(𝑚 𝜋𝑚)2 𝜁(2𝑚)∞
𝑚=1

∞
𝑛=1 .             (37) 

X. A NOVEL REPRESENTATION OF THE COOKSON HILLS SERIES 
AS THE DIFFERENCE OF TWO FLINT HILLS SERIES 

 
I prove that there exists a novel representation of the 

Cookson Hills series given by 
 

∑
𝑠𝑒𝑐2(𝑛)

𝑛3 = 4 ∑
𝑐𝑠𝑐2(2𝑛)

𝑛3𝑛≥1  −  ∑
𝑐𝑠𝑐2(𝑛)

𝑛3𝑛≥1𝑛≥1 .      (38) 
                                                             

I just use the trigonometric identity 𝑐𝑠𝑐2(𝑛) =
𝑠𝑒𝑐2(𝑛)

𝑠𝑒𝑐2(𝑛)−1
 

which can be manipulated successively as 
  

𝑠𝑒𝑐2(𝑛) = 𝑐𝑠𝑐2(𝑛)𝑠𝑒𝑐2(𝑛) − 𝑐𝑠𝑐2(𝑛), 
   

𝑠𝑒𝑐2(𝑛) =
1

𝑠𝑖𝑛2(𝑛) 𝑐𝑜𝑠2(𝑛)
− 𝑐𝑠𝑐2(𝑛),  

 
𝑠𝑒𝑐2(𝑛) =

1

( 
2 𝑠𝑖𝑛(𝑛) 𝑐𝑜𝑠 (𝑛)

2
 )2

− 𝑐𝑠𝑐2(𝑛),  

 
and recognizing  the term   2 𝑠𝑖𝑛(𝑛) 𝑐𝑜 𝑠(𝑛) = 𝑠𝑖𝑛(2𝑛), I 
write then 
  𝑠𝑒𝑐2(𝑛) =

1

( 
𝑠𝑖𝑛(2𝑛) 

2
 )2

− 𝑐𝑠𝑐2(𝑛) =
4

( 𝑠𝑖𝑛(2𝑛) )2 − 𝑐𝑠𝑐2(𝑛), 

 
which is divided by 𝑛3 as follows 
 

          𝑠𝑒𝑐2(𝑛)

𝑛3 =
4

𝑛3( 𝑠𝑖𝑛(2𝑛) )2 −
𝑐𝑠𝑐2(𝑛)

𝑛3  ,  
 

showing, as clearly visible, the Cookson Hills series because 
the expression  
 
 4

𝑛3( sin(2𝑛))2 =
4

𝑛3 𝑐𝑠𝑐2(2𝑛) denotes the main term, leading to 
represent the Cookson Hills series as exposed below 
 

         ∑ 𝑠𝑒𝑐2(𝑛)

𝑛3 = 4 ∑
𝑐𝑠𝑐2(2𝑛)

𝑛3𝑛≥1  −  ∑
𝑐𝑠𝑐2(𝑛)

𝑛3𝑛≥1𝑛≥1 .   
 
Hence, relationship (38) means that the difference between 
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four times the modified Flint Hills series ∑ 𝑐𝑠𝑐2(2𝑛)

𝑛3𝑛≥1  , which 

is a generic case when 𝑓 = 2 in ∑ 𝑐𝑠𝑐2(𝑓 𝑛)

𝑛3𝑛≥1 , and the original 

version ∑
𝑐𝑠𝑐2(𝑛)

𝑛3𝑛≥1  let us represent the problem of the 
Cookson Hills series as established in the known references. 
Therefore, (38) is highlighted as a finding to compute rather 

the Flint Hill series modified by 𝑓 = 2 in ∑ 𝑐𝑠𝑐2(𝑓 𝑛)

𝑛3𝑛≥1 , i.e., 
  

∑
𝑐𝑠𝑐2(𝑓𝑛)

𝑛3𝑛≥1 =
1

4
 ∑

𝑠𝑒𝑐2(𝑛)

𝑛3  +
1

4
 ∑

𝑐𝑠𝑐2(𝑛)

𝑛3𝑛≥1𝑛≥1  ,               (39) 
 
where 𝑓 = 2.                                  

Lemma 6. The general case ∑
𝑐𝑠𝑐2(𝑓 𝑛)

𝑛3𝑛≥1 , when 𝑓 = 2 in 

the Flint Hills series, converges to 

 
∑

𝑐𝑠𝑐2(𝑓𝑛)

𝑛3𝑛≥1 =
1

4
(𝜍 − 𝜚) +

1

4
(𝜏 − 𝜎) =

1

4
(42.994) +

1

4
(30.3144204831) ≈ 18.32710.                                     (40) 

  
Proof. Based on the relationships already obtained for the 

Flint Hills series when 𝑓 = 1, i.e., ∑
𝑐𝑠𝑐2(𝑓𝑛)

𝑛3 = 𝜏 − 𝜎 =𝑛≥1

30.3144204831 and the Cookson Hills series ∑
𝑠𝑒𝑐2(𝑓 𝑛)

𝑛3𝑛≥1  
when 𝑓 = 1, the substitution in (40) leads to computing the 

series ∑
𝑐𝑠𝑐2(2𝑛)

𝑛3𝑛≥1  which constitutes another important 
finding that let us establish a future analysis of convergence 
for advanced general cases when 𝑓 > 2, 𝑓 = 2, 3, 4, …. The 
evidence establishes a fascinating path to approach several 
unknown series. 

XI. DISCUSSION ABOUT THIS RESEARCH 
Having established the convergence of the Flint Hills and 

Cookson Hills series, the focus now shifts to understanding 
the usefulness of the Adamchik-Srivastava summation 
formula in achieving convergence for series involving 
trigonometric functions. The findings of this research reveal 
alternative series representations that effectively solve the 
mystery of convergence. This discussion is crucial in shedding 
light on the underlying principles and potential criteria for 
convergence. 

The fundamental aspect of this discovery lies in the ability 
to transform a series with erratic behavior, as demonstrated by 
the jumps resulting from the cosecant and secant functions, 
into a stable series. This transformation can be achieved by 
finding a formula that organizes the sequences in a manner 
that ensures positive and bounded terms, thereby avoiding 
infinite values. This aspect holds significant importance as it 
establishes the groundwork for a future criterion applicable to 
the general cases of the Flint Hills and Cookson Hills series, 
as well as their variations. 

The application of such a criterion holds potential in solving 
physical problems where models exhibit series with abrupt 
behavior. Physics or other sciences must remain consistent in 
its treatment of series solutions, ensuring the absence of 

infinite or abrupt jumps in the final solutions observed. By 
transforming the series into bounded systems with positive 
terms mainly, the localization of any remaining infinite terms 
becomes crucial. The future criterion, based on the Adamchik-
Srivastava summation formula, can be extended to incorporate 
similar formulas involving the Riemann Zeta function to 
precisely identify and localize these specific infinities or 
demonstrate their absence. 

Convergence of a series implies that terms of sequences can 
be expressed in a positive and bounded manner, thereby 
avoiding peculiar infinite behaviors. However, if a series, 
similar to the Flint Hills series, were to transform using a new 
formula resulting in the representation of stability, while 
unequivocally showing the absence of any appropriate 
transformation to deliver finite bounded sequences, then it can 
be concluded that the series is non-convergent. In such cases, 
methods to represent these inherently divergent series would 
be unavailable according to the context of the use of such 
series. The tasks pursued in this article successfully addressed 
the essence of convergence of the Flint Hills and Cookson 
Hills series, providing clarity and insight into the behavior of 
these series. 

In conclusion, this discussion highlights the significance of 
the Adamchik-Srivastava summation formula in achieving 
convergence for series involving trigonometric functions. The 
findings presented in this research open up avenues for future 
exploration, both in terms of extending the criterion to 
encompass broader cases and utilizing similar formulas to 
locate and analyze infinities within series representations. The 
tasks accomplished in this article have successfully unraveled 
the essential aspects related to the convergence of the Flint 
Hills and Cookson Hills series and provide a valuable 
contribution to the field of these. In the future, the discussion 
about if these general series ∑

𝑐𝑠𝑐2(𝑓 𝑛)

𝑛3𝑛≥1 , ∑
𝑠𝑒𝑐2(𝑓 𝑛)

𝑛3𝑛≥1 , or 

even the relevant cases ∑
𝑐𝑠𝑐𝑣(𝑓 𝑛)

𝑛𝑢𝑛≥1  and ∑
𝑠𝑒𝑐𝑣(𝑓 𝑛)

𝑛𝑢𝑛≥1 , for 
several pairs (𝑢, 𝑣) is a matter of serious research as basically 
the fundamental cases ∑

𝑐𝑠𝑐2(𝑛)

𝑛3𝑛≥1 , ∑
𝑐𝑠𝑐2(2𝑛)

𝑛3𝑛≥1  and 

∑
𝑠𝑒𝑐2(𝑛)

𝑛3𝑛≥1  were proved to converge and their observation 
should lead to finding a method that generalized all cases. This 
paper contributes to offering a way to get more clear criteria in 
the close future for these special series.  

In light of the implications of the nature of the number π 
and the newly established upper bound for its irrationality 
measure, significant insights emerge regarding the continuity 
and integrability of the one-dimensional surface area of the 
circle. Contrary to prevailing beliefs concerning a unit circle, 
the convergence of the Flint  Hills series, facilitated by the 
aforementioned formula, implies a revised upper bound of 
μ(π) ≤ 5/2 for the number π. This revised bound effectively 
governs the essential irrationality of π and subsequently leads 
to a reduction in the integrability of the one-dimensional 
surface area of the unit circle. The profound significance of 
this discovery becomes evident through the proof of the Flint 
Hills series, revealing the profound impact of the irrationality 
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of the number π on geometry. The degree to which π is 
irrational directly influences the underlying geometry, 
underscoring the far-reaching implications of this result.   

Also, it is noteworthy that the Apéry constant is an outcome 
of investigating the properties of the Flint Hills series through 
this representation  

 
 𝜁(3) =  ∑

𝑠𝑒𝑐2(𝑛)

𝑛3𝑛≥1  −  ∑
𝑡𝑎𝑛2(𝑛)

𝑛3𝑛≥1 . 
 

In this discussion, I present also the hypothesis that due to 
the nature of the Riemann Zeta function there exist values 
related to the Bernoulli numbers 𝐵4 = −1/30 and 𝐵6 = 1/42 
in the integer parts of the convergence of the Flint Hills series 
seen as 

 

 ∑ 𝑐𝑠𝑐2(𝑛) 

𝑛3
∞
𝑛=1 =

−1

𝐵4
+ 0.3144204831 … = 30 + 0.31442. .. 

 
and 
 

 ∑ sec2 𝑛

𝑛3𝑛≥1  =
1

𝐵6
+ 0.994 … = 42 + 0.994 … = 42.994 …. 

 
   A precise convergence of the formulas, in the future, in a 
more advanced  analysis, should demonstrate that the 
Bernoulli numbers 𝐵4 = −1/30 and 𝐵6 = 1/42 through their 
inverses are, in fact, the integer parts evidenced like the 
problems of the Flint Hills and Cookson Hills series. 

XII. CONCLUSION 
In conclusion, this paper has successfully demonstrated the 

convergence of the Flint Hills series to the expected value of 
30.3144... and the convergence of the Cookson Hills series to 
42.994... These results align with the statistical findings and 
provide strong evidence for the accuracy of the computed 
values. The analysis and methodology presented in this study 
have shed light on the behavior and convergence of these 
series, offering valuable insights into their mathematical 
properties. These findings contribute to a deeper 
understanding of the Flint Hills and Cookson Hills series, as 
well as their relevance in the broader context of number theory 
and mathematical analysis, e.g., in the definition of the new 
upper bound for the irrationality measure of 𝜋, i.e., 𝜇(𝜋) ≤
2.5 and the implications in the area of a unit circle as 
discussed. The confirmed convergence of these series serves 
as a crucial benchmark for future research and opens up 
avenues for exploring their applications. Moreover, the 
perspectives for the Flint Hills and Cookson Hills series are 
addressed to solving particular cases for the pairs (𝑢, 𝑣) =
(7, 1), (14, 2), (20, 3), and for higher cases, and to prove that 
the series ∑

1

𝑛𝑢|𝑠𝑖𝑛 (𝑛)|𝑣
∞
𝑛=1  converges for (𝑢, 𝑣) = (8, 1), (15, 

2), (21, 3), etc.,. It is a pending work in this research.  
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