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Abstract: This paper introduces the notion of
the JDB-semigroup, an extended study of dual
B-algebra by applying the concept of semigroup.
Some properties and characteristics of sub JDB-
semigroup, units, unity, JD-field, and JD-ideal in
a JDB-semigroup are presented in this study.
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I. Introduction

In [7], introduced the notion of B-algebra which
is related to several classes of algebras such as

BCH/BCI/BCK-algebras. A B-algebra is a triple
(X, ∗, 0) where X is a nonempty set, ∗ as a binary op-
eration on X and a constant 0 such that it satisfies the
following axioms:

B1. x ∗ x = 0

B2. x ∗ 0 = x

B3. (x ∗ y) ∗ z = x ∗ (z ∗ (0 ∗ y))

In [7], the authors demonstrates an interesting
relationship between B-algebras and groups.

In [2], introduced and characterized the notion of dual
B-algebra. A dual B-algebra is a nonempty set X and a
constant 1 and a binary operation ◦ such that it satisfies
the following axioms for all x, y, z ∈ X:

DB1. x ◦ x = 1

DB2. 1 ◦ x = x

DB3. x ◦ (y ◦ z) = ((y ◦ 1) ◦ x) ◦ z

The study of dual B-algebra investigates the rela-
tionship between dual B-algebra and BCK-algebra and
provides some of its initial properties, the study also
presents the relationship between dual B-algebra and
B-algebra. They also discussed the commutativity of a
dual B-algebra and its relationship to other algebra such

as CI-algebra and dual BCI-algebra. In [2], they proved
that every B-algebra determines a dual B-algebra called
the derived dual B-algebra.

In [4], introduced and investigated the KS-semigroup
which is related to BCK-algebras and semigroups. In
their paper, they introduced the ideal of KS-semigroups
and a strong KS-semigroup, some characterization of ide-
als of KS-semigroups are also provided. In [6], intro-
duced the notion of JB-semigroup, a new algebra that
incorporates the concept of semigroup into B-algebra.
An algebra (X, ∗, ·, 0) is called a JB-semigroup if it sat-
isfies the following:

i. (X, ∗, 0) is a B-algebra;

ii. (X, ·) is a semigroup;

iii. The operation · is left and right distributive over the
operation ∗.

The study of JB-semigroup proved that every ring
determines a JB-semigroup, but the converse need not
to be true. In their paper, they define JB-field and
JB-domain and prove that every JB-field is a JB-domain
and every finite JB-domain is a JB-field. In addition,
the concept of JB-ideal of JB-semigroup was presented,
and the qoutient JB-semigroup was constructed using
JB-ideal, as well as some of its properties. In addition,
the unity in a JB-semigroup was introduced and de-
noted by 1. Related properties of unity and 1-invertible
elements are also discussed.

The study of KS-semigroup and JB-semigroup im-
plies that the idea of a semigroup can be usefully incor-
porated into a wide variety of algebraic topics. With
the aforementioned studies, this research provides the
evidence for the existence of semigroup within the dual
B-algebra and outline the structure of JDB-semigroup.
This paper also shows that the JDB-semigroup has spe-
cific properties concerning the dual B-algebra. Specifi-
cally, some properties of the sub JDB-semigroup, units,
unity, JD-field, and JD-ideal of a JDB-semigroup are
also provided in this study.
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II. Preliminaries
Definition 1. [5] A binary operation “∗” on a set S is a
function mapping S × S into S. For each (a, b) ∈ S × S,
we will denote the element ∗((a, b)) of S by a ∗ b.

Theorem 1. [3] Let S be a nonempty subset of a dual
B-algebra X. Then S is a dual B-subalgebra if and only
if for any x, y ∈ S, x ◦ y ∈ S.

Theorem 2. [2] Let X = (X, ◦, 1) be any algebra of
type (2, 0). Then X is a dual B-algebra if and only if for
any x, y, z ∈ X.

i. (x ◦ y) ◦ (x ◦ z) = y ◦ z

Lemma 1. [2] Let X be a dual B-algebra. Then for any
x, y, z ∈ X, we have

i. (x ◦ 1) ◦ 1 = x

ii. (y ◦ z) ◦ x = z ◦ [(y ◦ 1) ◦ x]

Remark 1. [2] If (X, ∗, 0) is a B-algebra, define “ ◦ ”
as follows: x ◦ y = y ∗ x for all x, y ∈ X. Then (X, ◦, 0)
is a dual B-algebra, called the derived dual B-algebra.

Remark 2. [2] Not every dual B-algebra is a B-algebra
and not every B-algebra is a dual B-algebra.

Definition 2. [1] A semigroup is an ordered pair of the
form (G, ·) where G is a set and · is an associative binary
operation on G.

III. Sub JDB-semigroup, JD-field, and
JD-ideal

Definition 3. A JDB − semigroup is a quadruple
(X, ◦, ·, 1) where X is a nonempty set, “◦” and “·” are
the binary operations on X, and a constant 1 such that
the following axioms are satisfied for all x, y, z in X:

JD1. (X, ◦, 1) is a dual B-algebra;

JD2. (X, ·) is a semigroup; and

JD3. The operation “·” is left and right distributive over
the operation “◦”.

It follows from Definition 3 that if (X, ◦, ·, 1) is a
JDB-semigroup, then all characteristics associated with
the binary operation ◦ with respect to the dual B-algebra
(X, ◦, 1) also hold for the JDB-semigroup.

In the study of [2], every B-algebra determines a dual
B-algebra called the derived dual B-algebra (See Remark
1). The next remark describes the relationship between
JB-semigroup and JDB-semiroup.

Remark 3. If (X, ∗, ·, 0) is a JB-semigroup, define “ ◦ ”
as x ◦ y = y ∗ x. Then (X, ◦, ·, 1) is a JDB-semigroup
called the derived JDB-semigroup.

In [2], the authors also proved that not every dual
B-algebra is a B-algebra and not every B-alebra is a
dual B-algebra, it easily follows that not every JDB-
semigroup is a JB-semigroup and not every every JB-
semigroup is a JDB-semigroup.

Below is an example of a JDB-semigroup.

Example 1. Let X = {1, a, b, c} with the following ta-
bles:

◦ 1 a b c
1 1 a b c
a a 1 c b
b b c 1 a
c c b a 1

· 1 a b c
1 1 1 1 1
a 1 a b c
b 1 b c a
c 1 c a b

By routine computations, (X, ◦, ·, 1) is a JDB-
semigroup.

The following example shows that the set complex
numbers is not a JDB-semigroup.

Example 2. Let X = C be the set of complex numbers.
Define ◦ as a ◦ b =

b

a
for all a, b ∈ X, with a ̸= 0 and

· be the usual multiplication. Thus, (X, ◦, 1) is a dual
B-algebra but not a JDB-semigroup.

Solution: Suppose a, b, c ∈ C such that a = x + iy, b =
u + iv, c = r + is. Note that (X, ◦, 1) satisfies (DB1):
a ◦ a = (x+ iy) ◦ (x+ iy) =

x+ iy

x+ iy
= 1, (DB2): 1 ◦ a =

x+ iy

1
= x + iy = a, and (DB3): a ◦ (b ◦ c) =

r+is
u+iv

x+ iy
=

r + is

(u+ iv)(x+ iy)
=

r + is
x+iy

1
u+iv

= ((b◦1)◦a)◦c. Thus, (X, ◦, 1)

is a dual B-algebra. Since · is associative, then (X, ·) is
a semigroup. Observe that by JD3, a · (b ◦ c) = a · c

b
=

ac

b
̸= c

b
=

ac

ab
= (a · b) ◦ (a · c). Therefore, X = C is a

dual B-algebra but not a JDB-semigroup.

This example leads to the following remark.

Remark 4. A dual B-algebra with an associative oper-
ation is not always a JDB-semigroup.

The following properties also hold using the derived
JDB-semigroup.

Lemma 2. Let X be a JDB-semigroup (X, ◦, ·, 1). Then
for all a, b, c ∈ X,

i. a · 1 = 1 · a = 1,

ii. a · (b ◦ 1) = (a ◦ 1) · b = (a · b) ◦ 1,

iii. (a ◦ 1) · (b ◦ 1) = a · b,

iv. a · ((c ◦ 1) ◦ b) = ((a · c) ◦ 1) ◦ (a · b), ((c ◦ 1) ◦ b) · a =
((c · a) ◦ 1) ◦ (b · a).
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Proof : Let a, b, c ∈ X.

i. By DB1 and JD3, a·1 = a·(1◦1) = (a·1)◦(a·1) = 1.
Similarly, 1 · a = (1 ◦ 1) · a = (1 · a) ◦ (1 · a) = 1.

ii. By JD3 and (i), a · (b◦1) = (a ·b)◦ (a ·1) = (a ·b)◦1.
Similarly, (a ◦ 1) · b = (a · b) ◦ (1 · b) = (a · b) ◦ 1.

iii. By ii, JD3, i, and Lemma 1 i, (a ◦ 1) · (b ◦ 1) =
((a◦1)·b)◦1 = ((a·b)◦(1·b))◦1 = ((a·b)◦1)◦1 = a·b.

iv. By JD3 and (ii), a ·((c◦1)◦b) = (a ·(c◦1))◦(a ·b) =
((a · c) ◦ 1) ◦ (a · b). Also, ((c ◦ 1) ◦ b) · a = ((c ◦ 1) ·
a) ◦ (b · a) = ((c · a) ◦ 1) ◦ (b · a).

In what follows, let X denotes a JDB-semigroup
(X, ◦, ·, 1) unless otherwise specified.

Definition 4. Let H be a nonempty subset of X. H is
called a sub JDB-semigroup of X if H itself is a JDB-
semigroup.

Remark 5. Suppose X is a JDB-semigroup.

i. If H is a sub JDB-semigroup of X, then (H, ◦, 1)
is a dual B-subalgebra of (X, ◦, 1) and 1 ∈ H.

ii. {1} and X are called trivial sub JDB-semigroups of
X.

The following corollary shows for a subset to be a sub
JDB-semigroup. This condition determines whether or
not a nonempty subset of a JDB-semigroup is a sub
JDB-semigroup.

The next Corollary follows from Theorem 1 and from
the definition of the binary operator.

Corollary 1. (Sub JDB-semigroup Criterion) Let
H be a nonempty subset of X. Then H is a sub JDB-
semigroup of X if and only if x ◦ y, x · y ∈ H for all
x, y ∈ H.

Proof : Suppose H is a sub JDB-semigroup of X. Then
H is a JDB-semigroup and so for all x, y ∈ X, x ◦ y,
x · y ∈ H. Conversely, suppose x ◦ y, x · y ∈ H for
all x, y ∈ H. Then (H, ◦, 1) is a dual B-subalgebra of
(X, ◦, 1) by Theorem 1. Since x · y ∈ H, H is closed
under ·. Since H ⊆ X, and (X, ·) is a semigroup, then
X is associative and so the operation · is left and right
distributive over the operation ◦ follows.

Theorem 3. Let X be a JDB-semigroup and {Hα : α ∈
I} be a nonempty collection of sub JDB-semigroup of
X. Then

∩
α∈I

Hα is also a sub JDB-semigroup of X.

Proof : Since Hα is a sub JDB-semigroup for each α,
then 1 ∈ Hα for all α ∈ I. Hence, 1 ∈

∩
α∈I

Hα and∩
α∈I

Hα ̸= ∅. Let a, b ∈
∩

α∈I
Hα. Then a, b ∈ Hα for

all α ∈ I. Since Hα is a sub JDB-semigroup of X for
each α, a ◦ b, a · b ∈ Hα for all α ∈ I by Corollary 1. It
follows that a ◦ b, a · b ∈

∩
α∈I

Hα. Hence,
∩

α∈I
Hα is a sub

JDB-semigroup of X.

Example 3. The set H1 = {1, a} in Example 1 is a sub
JDB-semigroup, while the set H2 = {1, a, b} is not since
a ◦ b = c /∈ (H2, ◦, 1) and b · b = c /∈ (H2, ·, 1).

Definition 5. A JDB-semigroup (X, ◦, ·, 1) is called
commutative if for all a, b ∈ X, a · b = b · a. Otherwise,
it is called noncommutative.

Example 4. Consider the JDB-semigroup in Example
1, by routine calculation, (X, ·) is commutative.

Note that not all JDB-semigroup is commutative as
seen in the following example.

Example 5. Let X = {1, a, b, c} be a set with the fol-
lowing tables:

◦ 1 a b c
1 1 a b c
a a 1 c b
b b c 1 a
c c b a 1

· 1 a b c
1 1 1 1 1
a 1 1 1 1
b 1 a b c
c 1 a b c

Then b·a = a ̸= 1 = a·b which implies that, (X, ◦, ·, 1)
is a noncommutative JDB-semigroup.

Definition 6. Let X be a JDB-semigroup. An element
b ∈ X is called left unity in X if b · a = a for all a ∈ X.
An element c ∈ X is called right unity in X if a · c = a
for all a ∈ X. Moreover, an element u ∈ X is called
the unity in X if it is both left and right unity, that is,
a · u = a = u · a for all a ∈ X.

Example 6. Consider the JDB-semigroup in Example
5. The elements b and c are the left unity in X since for
b ∈ X, b ·a = a, b · b = b, b · c = c for all a, b, c ∈ X. Also,
for c ∈ X, c · a = a, c · b = b, c · c = c for all a, b, c ∈ X.

Example 7. Consider the JDB-semigroup in Example
1, the element a ∈ X is a right unity in X. In particular,
a ∈ X in Example 1 is also a left unity in X, hence a
unity in X since a · a = a, b · a = b = a · b, c · a = c = a · c
for all a, b, c ∈ X.

In view of Example 7, 1 ∈ X is not a unity in X.

This is illustrated in the next remark as immediate
from Lemma 2(i).

Remark 6. The element 1 ∈ X in a JDB-semigroup is
not a unity in X when X is nontrivial.

The unity in X, if it exist, is the identity element of
X and is denoted by u.

The next theorem describes that 1 ∈ X is the unity
if and only if X is the trivial JDB-semigroup {1}.

Theorem 4. Let X be a JDB-semigroup. Then 1 ∈ X
is a unity in X if and only if X = {1}.

Proof : Suppose X is a JDB-semigroup and 1 is the
unity in X. Assume on the contrary that there exist

INTERNATIONAL JOURNAL OF PURE MATHEMATICS 
DOI: 10.46300/91019.2023.10.2 Volume 10, 2023

E-ISSN: 2313-0571 10



1 ̸= a ∈ X. Then 1 ·a = a = a ·1 since 1 is the unity. By
Lemma 2(i), 1 · b = 1 = b · 1 for all b ∈ X. Hence, a = 1,
a contradiction. Hence X = {1}. Conversely, suppose
X = {1}, then 1 · 1 = 1 which implies that 1 is the unity
in X.

The following Theorem shows that the unity of the
JDB-semigroup, if it exist, is unique.

Theorem 5. Suppose X is a JDB-semigroup with
unity. Then the unity in X is unique.
Proof : Let X be a JDB-semigroup with unity u ∈ X.
Then u · a = a = a · u for all a ∈ X. Suppose u′ ∈ X is
also a unity in X. Then u′ · b = b = b · u′ for all b ∈ X.
Now, u = u · u′ = u′. This implies that the unity in a
JDB-semigroup is unique.

Definition 7. Let X be a JDB-semigroup with unity.
An element a in a JDB-semigroup X is called a unit if
and only if there exists a′ ∈ X such that a·a′ = u = a′ ·a.

Example 8. Consider the JDB-semigroup X in Exam-
ple 1. In view of Example 7, a ∈ X is a unity in X. The
elements a, b, c ∈ X are units in X since for a ∈ X, there
exist a ∈ X such that a · a = a, for b ∈ X, there exist
c ∈ X such that b · c = a = c · b and for c ∈ X, there
exist b ∈ X such that c · b = a = b · c.

The next corollary follows from Theorem 4 and Def-
inition 7.

Corollary 2. Suppose X = {1} is the trivial JDB-
semigroup. Then 1 ∈ X is both the unity and a unit in
X.

Theorem 6. Let X be a JDB-semigroup with unity and
T be the set of all units in X. Then a · b ∈ T for all
a, b ∈ T .

Proof : Let a, b ∈ T . There exist x, y ∈ X such that
a ·x = u = x ·a and b · y = u = y · b. Now (a · b) · (y ·x) =
a·(b·y)·x = a·u·x = a·x = u. Similarly, (y ·x)·(a·b) = u.
Hence, (a · b) · (y · x) = u = (y · x) · (a · b). Thus, a · b is
a unit and so a · b ∈ T .

The next corollary follows from Theorem 6 and Corol-
lary 1.

Corollary 3. Let X be a JDB-semigroup with unity
and T be the set of all units in X. If (T, ◦, 1) is a dual
B-subalgebra, then T is a sub JDB-semigroup.

Definition 8. Let X be a nontrivial JDB-semigroup
with unity. X is called a JD-field if the JDB-semigroup
(X, ·) is commutative and every element a ∈ X is a unit.

Remark 7. If X is a JD-field, X is a JDB-semigroup
and 1 ∈ X.

Example 9. Consider the JDB-semigroup X in Exam-
ple 1. In view of Example 8, X is a JD-field.

Definition 9. A sub JDB-semigroup F of X is called
a sub JD-field of X if F is also JD-field.

Example 10. Consider the JDB-semigroup in Example
1. In view of Example 9. Let F = {1, a} be a sub JDB-
semigroup of X, then F is a sub JD-field of X.

Theorem 7. (Sub JD-field Criterion) Let X be a
JD-field. A nonempty subset H ̸= {1} of X is a sub
JD-field if and only if

i. 1 ∈ H,

ii. x ◦ y, x · y ∈ H for all x, y ∈ H,

iii. Every element a ̸= 1 of H is a unit.
Proof : (⇒) (i) Suppose H is a sub JD-field of X. Since
H is a sub JD-field, H is JD-field. In Remark 7, 1 ∈
H. (ii) Since H is a sub JD-field, H is a sub JDB-
semigroup, by Corollary 1, x◦y, x·y ∈ H for all x, y ∈ H.
(iii) Since H is a sub JD-field, H is a JD-field and every
element a ̸= 1 of H is a unit. (⇐) Conversely, suppose i,
ii, iii holds. By Corollary 1, Definition 8, and Definition
9, H is a sub JDB-field.
Theorem 8. Let X be a JD-field and {Hα : α ∈ F}
be a nonempty collection of sub JD-fields in X. Then∩
α∈F

Hα is a sub JD-field of X.

Proof : Let {Hα : α ∈ F} be a nonempty collection of
sub JD-fields of X. By Theorem 7, 1 ∈ Hα for all α ∈ F
which implies that 1 ∈

∩
α∈F

Hα. Suppose x, y ∈
∩

α∈F
Hα.

Then x, y ∈ Hα for all α ∈ F . Since Hα is a sub JD-field
for all α ∈ F , then x◦y, x ·y ∈ Hα for all α ∈ F . Hence,
x◦y, x ·y ∈

∩
α∈F

Hα. Since Hα is a sub JD-field for all α,

every element a ̸= 1 of Hα is a unit, thus every element
a ∈

∩
α∈F

Hα is a unit where a ̸= 1. Thus,
∩

α∈F
Hα is a

sub JD-field X.
In [2], the authors introduced the notion of a normal

subset of a dual B-algebra, a nonempty subset N of a
dual B-algebra is said to be normal if for any x◦y, a◦b ∈
N , (a ◦ x) ◦ (b ◦ y) ∈ N .

In what follows is a definition of JD-ideal which in-
corporates the definition of a normal dual B-algebra.
Definition 10. Let X be a JDB-semigroup. A subset
F of X is called a JD-ideal of X if the following hold:

i. 1 ∈ F ,

ii. (a ◦ x) ◦ (b ◦ y) ∈ F for any a ◦ b, x ◦ y ∈ F ,

iii. For any a ∈ F , x ∈ X a · x, x · a ∈ F .
This means that the sub JDB-semigroup F in Def-

inition 10(ii) is a normal subset of the dual B-algebra
(X, ◦, 1). The subsets {1} and X are also JD-ideals
of a JDB-semigroup X and are called trivial JD-ideals
while other ideals are called nontrivial JD-ideals. In
Example 5, the sets F1 = {1, a} and F2 = {1, b} are
JD-ideals of X, while the set F3 = {1, a, b} is not since
there exist 1 ◦ a = a ∈ X and 1 ◦ b = b ∈ X such that
(1 ◦ 1) ◦ (a ◦ b) = 1 ◦ c = c /∈ F3. Consequently, F3 is
not a normal subset of X. Also, there exists b ∈ F3 and
b ∈ X such b · b = c /∈ F3.
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Corollary 4. Let F be a JD-ideal of X. Then F is a
sub JDB-semigroup of X.

Proof : Suppose F is a JD-ideal of X. Let x, y ∈ F .
Since 1 ∈ F and x = 1 ◦ x, y = 1 ◦ y ∈ F , by DB2 and
DB1 , x ◦ y = 1 ◦ (x ◦ y) = (1 ◦ 1) ◦ (x ◦ y) ∈ F , implies
x ◦ y ∈ F . Since F is a JD-ideal of X, then x ∈ X. By
Definition 10 (iii), x ·y, y ·x ∈ F . This implies that every
JD-ideal is a sub JDB-semigroup.

Theorem 9. Suppose a sub JDB-semigroup contains F
and 1 ∈ F . Then F is a JD-ideal.
Proof : Suppose S is a sub JDB-semigroup such that
F ⊆ S and 1 ∈ F . It remains to show Definition 10(ii)
and (iii). (ii) Suppose a◦b, x◦y ∈ F . Then a◦b, x◦y ∈ S.
Since S is a sub JDB-semigroup, by Corollary 1, a, b, x,
y ∈ S. Assume on the contrary that (a ◦ x) ◦ (b ◦ y) /∈ F ,
then (a ◦ x) ◦ (b ◦ y) /∈ S, a contradiction since S is a
sub JDB-semigroup. (iii) Suppose a ∈ F , x ∈ X, then
a ∈ S. Assume on the contrary that a · x, x · a /∈ F ,
then a · x, x · a /∈ S which implies that a · x, x · a /∈ X,
a contradiction. Thus, F is a JD-ideal of a sub JDB-
semigroup S of X.

Theorem 10. Let X be a JDB-semigroup and {Hα :
α ∈ I} be a nonempty collection of JD-ideals in X.
Then

∩
α∈I

Hα is a JD-ideal of X.

Proof : Let H =
∩

α∈I
Hα. Note that 1 ∈ Hα for all α ∈ I.

Thus, 1 ∈ H and H is nonempty. Let a ◦ b , x ◦ y ∈ H.
Then a ◦ b , x ◦ y ∈ Hα for all α. Since Hα is a JD-ideal
for each α, it follows that (a ◦ x) ◦ (b ◦ y) ∈ Hα for all α.
Hence, (a◦x)◦ (b◦ y) ∈ H. Let a ∈ H, x ∈ X. Since Hα

is a JD-ideal for each α, then a · x, x · a ∈ H. Hence, H
is a JD-ideal of X.

Remark 8. The union of two JD-ideals is not neces-
sarily a JD-ideal.

This is illustrated in the next example.

Example 11. Consider the JDB-semigroup (X, ◦, ·, 1)
in Example 5. The set F1 = {1, a} and F2 = {1, b} are
JD-ideals of X. Since a◦c = b ∈ F1∪F2 but c /∈ F1∪F2.
Thus F1 ∪ F2 = {1, a, b} is not a JD ideal.

The following lemmas also hold in a JDB-semigroup
and are necessary on the next theorem.

Lemma 3. Let X be a dual B-algebra, then for all x,
y ∈ X, (x ◦ y) ◦ 1 = y ◦ x.

Proof : Suppose x, y ∈ X such that X is a dual B-
algebra. By Lemma 1(ii) and (i), (x ◦ y) ◦ 1 = y ◦ [(x ◦
1) ◦ 1] = y ◦ x.

Lemma 4. Let F be the dual B-subalgebra of a dual
B-algebra X. Let a, b ∈ X, if a ◦ b ∈ F , then b ◦ a ∈ F .
Proof : Let a ◦ b ∈ F . By Lemma 3, b ◦ a = (a ◦ b) ◦ 1.
Since 1 ∈ F and a◦ b ∈ F , then (a◦ b)◦1 ∈ F . Similarly,
a ◦ b = (b ◦ a) ◦ 1 ∈ F .

Theorem 11. Suppose A be the sets of all subalgebras
of a dual B-algebra X. Let N ∈ A. Then the following
are equivalent.

(i) N is a normal dual B-subalgebra;

(ii) If x ∈ X, y ∈ N , then (y ◦ x) ◦ x ∈ N .

Proof : (i) ⇒ (ii): Let x ∈ X, y ∈ N . Since N is a dual
B-subalgebra, y ◦ 1 ∈ N and x ◦ x = 1 ∈ N . Since N is
normal, by DB2, (y ◦ x) ◦ x = (y ◦ x) ◦ (1 ◦ x).
(ii) ⇒ (i): Let x ◦ y, a ◦ b ∈ N . By Lemma 4, b ◦ a ∈ N .
By Theorem 2 and (ii), (b◦1)◦ (a◦1) = ((a◦b)◦ (a◦1))◦
(a ◦ 1) ∈ N . By applying DB3 twice, (b ◦ x) ◦ (a ◦ x) =
((a◦1)◦ (b◦x))◦x = (((b◦1)◦ (a◦1))◦x)◦x ∈ N . Thus,
(b ◦ x) ◦ (a ◦ x) ∈ N . Since N is a dual B-subalgebra,
((b◦x)◦(a◦x))◦(x◦y) ∈ N . By Lemma 1(ii), Lemma 3,
and Theorem 2, ((b◦x)◦ (a◦x))◦ (x◦y) = (a◦x)◦ (((b◦
x)◦1)◦(x◦y)) = (a◦x)◦((x◦b)◦(x◦y)) = (a◦x)◦(b◦y).
Thus, (a ◦ x) ◦ (b ◦ y) ∈ N and therefore N is normal.

Proposition 1. Let S be a sub JDB-semigroup of X.
Then S is a normal dual B-subalgebra of X if and only
if S is a JD-ideal of X.

Proof : (⇒) Suppose S is a normal dual B-algebra of X.
Let a, b, x, y ∈ S. By Remark 5(i), 1 ∈ S. Since S is
normal, (a ◦x) ◦ (b ◦ y) ∈ S for any a ◦ b, x ◦ y ∈ S. Since
S is a sub JDB-semigroup, then for any a ∈ S, x ∈ X,
a · x, x · a ∈ S. (⇐) Now, suppose S is a JD-ideal of
X. Then S is a normal subset of X. By Corollary 4 and
Remark 5(i), S is a normal dual B-subalgebra of X.

Definition 11. Let a, b ∈ X. The subset Z(X) of X is
called the center of X if Z(X) = {a ∈ X|a · b = b · a for
all b ∈ X}.

Example 12. Consider the JDB-semigroup in Example
1. The JDB-semigroup Z(X) = X is the center of X.

Remark 9. Let X be a JDB-semigroup.

(i) By Lemma 2(i) it follows that 1 is in Z(X), conse-
quently Z(X) is nonempty.

(ii) If the JDB-semigroup is commutative, then
Z(X) = X. Moreover, the center of every JD-field
is itself.

Theorem 12. Let X be a JDB-semigroup. Then Z(X)
is a sub JDB-semigroup of X.

Proof : Let a, b ∈ Z(X) and x ∈ X. By JD3, x · (a ◦ b) =
(x · a) ◦ (x · b) = (a · x) ◦ (b · x) = (a ◦ b) · x. Hence,
a ◦ b ∈ Z(X). Furthermore, x · (a · b) = (x · a) · b =
(a ·x) ·b = a · (x ·b) = a · (b ·x) = (a ·b) ·x, so a ·b ∈ Z(X).
Thus, Z(X) is a sub JDB-semigroup of X.
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IV. Conclusion
This research introduced and investigated the JDB-

semigroup; the findings of this study proves the exis-
tence of semigroup to dual B-algebra. This study also
describes the relationship between JDB-semigroup and
JB-semigroup. Some properties of the JDB-semigroup
such as those that involve its elements, and the inter-
section of sub JDB-semigroups, sub JD-fields, and sub
JD-ideals are also sub JDB-semigroup, sub JD-field,
and sub JD-ideal, respectively. In addition, the char-
acterizations of sub JDB-semigroup and sub JD-field
are provided as the sub JDB-semigroup criterion and
sub JD-field criterion, respectively. Future research on
the homomorphism of the JDB-semigroup and investi-
gation of its isomorphism theorems would be interesting
to study.
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