
I. INTRODUCTION 
PTIMIZATION control problems are solved by means of 
necessary conditions of optimality frequently. First order 

optimality conditions used the differentiation of the state 
functional (see, for example, the stationary condition, Euler 
equation, the variational inequality, the maximum principle, 
etc.). So the optimization control theory can be interpreted as 
an application of the differentiation theory. 

The differentiation is an operation of the local linearization 
[1]. The nonlinear phenomenon has become weakly apparent 
in a small enough set. Hence the regular enough nonlinear 
object can be approximated by a linear one. For example, the 
smooth curve can be approximated in a neighbourhood of a 
point by its tangent in this point. However the definition of the 
tangent uses the derivative of the function. We apply the 
differentiation whenever a nonlinear object is analyzed by 
means of its linear approximation. 

Note that the differentiation relates with the local structure 
of the object only. If functions (functionals, operators) are 
equal in a neighbourhood of a point, then it has the same 
derivatives in this point. So the derivative characterizes the 
local properties of the class of objects, but not a concrete 
object. These objects are equivalent in some way. This 
equivalence class is the germ of functions (functionals, 
operators) in this point [2]. Therefore there exists a natural 
relation between the differentiation and germs theory. 

The differentiation transforms the germ of operators to a 
linear operator, which is its derivative in the given point. This 
map can be interpreted as a functor. It transforms the category, 
which has germs of operators as morphisms, to the category, 
which has linear operators as morphisms. So we can apply the 
categories theory [3] for the interpretation of the 
differentiation.  

The differentiation functor was defined in [4] without the 
germs theory. These results were used for the analysis of 
unconditional extremum problems there. The definition of the 
differentiation functor with using germs theory and its 
application to the extremum theory by means of the inverse 
function theorem where considered in [5]. We will define 
partial differentiation functors. Necessary optimality 
conditions with category interpretation will be proved for 
abstract optimization control problems with using implicit 
function theorem. Finite dimensional extremum problems and 
an optimization control problem for nonlinear elliptic equation 
with state constraints will be considered as examples. 

II. DIFFERENTIATION FUNCTOR  
AND ITS APPLICATION TO THE EXTREMUM THEORY  

We consider the set of pairs ( , ),X x  where Х is a Banach 
space, and х is a fixed point of X.  For all pairs ( , )X x  and 
( , )Y y  determine an operator :L X Y→  that is Frechet 
differentiable at the point x such that Lx y= . Two operators 
are equivalent if they coincide at a neighbourhood of the point 
х. The relevant equivalence class, namely the germ of the 
operator L at the point x, is denoted by xL . We determine the 

category Γ with Banach spaces with fixed points as the objects 
and the germs of differentiable operators as the morphisms.  

We now define a map D from Γ to the category Β of Banach 
spaces with linear continuous operators. For all object ( , )X x  

and the morphism xL  of the category Γ with the beginning 

( , )X x  and the end ( , )Y y  we determine  

( , ) ,D X x X= ( ).xDL L x′=  
This map is a functor. It is called the differentiation [4]; and 
the value Dψ at the germ ψ is called the derivative of the 
morphism ψ of the category Γ [5]. 

Determine a category Σ with Banach spaces with fixed 
points as the objects. Consider the germs of operators that are 
continuously differentiable at a neighbourhood of the fixed 
point and have invertible derivative at this point. Let it be the 
morphisms of Σ. Then Σ is the subcategory Σ of Γ; besides its 
morphisms are isomorphisms. 
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There exists an application of these notions to the extremum 
theory. Let :A Y V→  be a state operator, where V and Y are 
Banach spaces. The state of a system is described by the 
equation ,Ay v=  where v is a control, and y is the state 
function. Suppose for all control v of V this equation has a 
unique solution y Lv=  from the space Y. Determine the state 
functional :I V →   by the equality ( ) ( ) ( ),I v J v K Lv= +  
where : ,  :J V K Y→ →   are given functional. We have 
the problem of the minimization of the functional I on the 
space V.  

If v is a point of the local minimum of the functional I on the 
space V, Jv and Ky are the morphisms of Γ, and Ay is the 
morphism of Σ, where ,y Lv= then 

1
( ) 0,v y yDJ H DA DK

−
+ =                                        

where H is the general cofunctor from Β to the sets category 
that is determined by the object   [4]. This result was 
extended to the problem of the minimization of a functional on 
the convex set [5]. However it was an optimization problem, 
where the control is an absolute term of the state equation 
only. Besides the state functional was the sum of the functional 
J and K there. We will consider the general case of the state 
equation and the functional. So we will determine partial 
differentiation functors.     

III. PARTIAL DIFFERENTIATION FUNCTORS  
AND ABSTRACT OPTIMIZATION CONTROL PROBLEM 

Consider a continuously differentiable operator 
:A V Y Z× →  and a functional :I V Y× →  , where V,Y,Z 

are Banach spaces. Suppose for all control v V∈  there exists 
a unique state y Lv=  from Y such that ( , ) 0.А v y =  We have 
the problem of the minimization for the functional  

( , )v I v Lv→  on the space V. 
Let ( , ),  ( , ),  ( , )V v Y y V Y w×  be objects of Γ, where 

( , ).w v y=  Then Аw is the morphism of Γ. Its derivative  DАw 

is the pair  ( )( ), ( ) ,v yА w А w  where ( )vА w  is the derivative of 

the map ( , )v А v y→  at the point v, and ( )yА w  is the 

derivative of ( , )y А v y→  at y. Denote by V Y⊕  the  
coproduct of the objects of the category Β. Its morphisms 

( ) : ,  ( ) :v yА w V Z А w Y Z→ →
 

determine a cocone.  Then 

( ),  ( ),V w v Y w yDA А w DA А wι ι= =  where Vι  and Yι  are the 

canonic inclusions of V and Y to .V Y⊕   
Suppose the beginning ( , )W w  of the morphism Аw of the 

category Γ is the coproduct ( , ) ( , ).V v Y y⊕  The values 

V wDAι  and Y wDAι  are called the partial derivatives V wD A  

and Y wD A  of  Аw . We have the equalities w V w Y wDA D A D A= ⊕  
and .w V w Y wDI D I D I= ⊕  Consider the pair ( , )F I A=  and 

the matrix ( )F w′  of its partial derivatives at the point w. It is 

the derivative DFw of the morphism Fw of Γ. But it is the 
morphism of the category Β with beginning V Y⊕  and   

,Z⊗  that is the product of the objects of Β.  
Return to our optimization control problem. It can be 

transformed to the problem of the minimization for the smooth 
functional S IQ=  on the space V, where ( ), ,Q E L=  and E 
is the unit operator on V. 

Theorem 1. Suppose v is a point of local minimum of the 
functional S on the space V,  Fw is the morphism of Γ, and  CLv 
is the morphism of Σ, where ( , ),w v Lv=  ( , ).Сy А v y=  Then 

( ) 0.w vD F Q =
                     

(1)
 

Proof. The derivative ( )yА w  is invertible. So the operator 

L is differentiable at the point v because of the implicit 
function theorem. Then Lv and Qv are morphisms of the 
category Γ. Therefore the functional S is differentiable; and 
necessary condition of local extremum ( ) 0S v′ =  is true. It can 

be transformed to the equality 0.vDS =  Then the operator 
R AQ=  is differentiable too. Using state equation, from the 
equality ( ) 0R v h Rvσ+ − =  for all number σ and ,h V∈ we 

get ( ) 0;R v′ =  so 0.vDR =  Then we obtain 

( ) ( ) ( ), , ,w v w w v w v w v v vF Q I A Q I Q A Q S R= = =  
because of the definition of the morphism Fw. So the equality 
(1) is true.  

We give some corollaries of Theorem 1. 
Corollary 1. Under the conditions of Theorem 1 we have 

the equality [ ]*
( , ) ( , ) ,v vI v y A v y р=

 
where y is the solution 

of the state equation ( , ) 0,А v y =  and p is the solution of the 

adjoint equation 
*

( , ) ( , ).y yA v y р I v y=    

Corollary 2. Let 0 1( , , ..., )nх x x x=  be a point of the local 

extremum of the function 0 0 ( )f f x=  under the equalities 
( ) 0,  1, 2, ..., ;if x i n= =  and all functions are continuously 

differentiable at a neighbourhood of the point х. Then its 
Jacobian, that is determined by the functions 0 1, , ..., nf f f  at 
the point x, is equal to zero.   Consider the minimization problem for the function 

0 0 ( )f f x=  under the equalities ( ) 0,  1, 2, ..., ,if x i n= =  
where 1( , ..., ).n rх x x +=  Suppose all functions are smooth 

enough. Fixe a vector 1( , ..., ),nα α α=  where 

{1, ..., },i n rα ∈ +
 

 i j i jα α≠ ∀ ≠ . Determine the matrixes 

1

1

1

0 0 0

1 1 1

( ) ... ( ) ( )

( ) ... ( ) ( )
( ) ,  1, 2, ..., ,

... ... ... ...
( ) ... ( ) ( )

n i

n i

i

n in n n

f x f x f x

f x f x f x
F x i r

f x f x f x

α α β

α α α β
β

α α β

∂ ∂ ∂

∂ ∂ ∂
= =

∂ ∂ ∂
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where {1, ..., },  i i jn rβ β β∈ + ≠
 
for all i j≠  and i jβ α≠  

for all i,j; ( )k mf x∂
 
is the derivative of the function 

 
fm with 

respect to xk at the point x. 
Corollary 3. If x is a point of the local extremum of the 

function f0 under the given constraints, then 

( ) 0,  1, 2, ..., .
i

F x i rα
β = =

 
We determine necessary conditions of the extremum without 

Lagrange multipliers. However these results can be 
transformed to the standard form.                                                       

IV. OPTIMIZATION CONTROL PROBLEMS WITH CONSTRAINTS 
Consider again a continuously differentiable operator 
:A V Y Z× →  and a functional :I V Y× →  , where V,Y,Z 

are Banach spaces. Let U be a convex closed subset of V. 
Suppose for all control v U∈  there exists a unique state 
y Lv=  from Y such that ( , ) 0.А v y =  We have the problem of 

the minimization for the functional ( , )v I v Lv→  on the set U. 
Theorem 2. Under the conditions of Theorem 1 suppose v is 

a point of a local minimum for the functional ( , )v I v Lv→  on 
the set U. Then v satisfies the variational inequalities 

( ) ( ) 0 ,  1, 2,i w v iD F Q u v u U iπ − ≥ ∀ ∈ =
                            

(2)
                             

  

where 1 2,  ,U U U V= =  1π  and 2π  are canonic projections.  
Proof. Let v be a point of a local minimum for the functional 

( , )v I v Lv→  on the set U. Then we have the inequality  
( , ) ( , ) 0 ,I L I v Lv Oθ θ θ− ≥ ∀ ∈  

where the subset O of U is a neighbourhood of the point v. Let 
u U∈  be fixed. Chose a positive number σ such that the 
inclusion ( )v u v Оσ+ − ∈  is true. Determine the control 

( ).v u vθ σ= + −  We get 

[ ]( )( ), ( ) ( , ) 0.I v u v L v u v I v Lvσ σ+ − + − − ≥
                  

(3) 

Let Ξ maps the morphism xLψ =  of Γ to the value Lx. So 
the derivative of the morphism satisfies the equality 

( ),x h x xL L DL h hη+Ξ = Ξ + +                                                    

where ( )( ) .h о hη =  Then we have 

( ),w h w V w V Y w Y II I D I h D I h hη+Ξ = Ξ + + +           

 ( ),w h w V w V Y w Y AA A D A h D A h hη+Ξ = Ξ + + +                           

where ( ) ( )( , ),  ( ) ,  ( ) .V Y I Ah h h h о h h о hη η= = =                                
Determine 

( ) [ ]( , ),  ( ), ,  ( ) .Y Yw v Lv h u v h h L v u v Lvσ σ= = − = + − −
 
 

Using implicit function theorem, we get
 

( )( ) ( ) ( ) ( ),Y vh L v u v DL u vσ η σ σ η σ′= − + = − +  

where ( ) ( ).оη σ σ=
 
Then we obtain 

1( ) ( ) ( ),w h w V w Y w vI I D I u v D I DL u vσ σ η σ+Ξ = Ξ + − + − +  

where 1( ) ( ).оη σ σ=  Devise the inequality (3) by σ and pass 
to the limit as 0.σ →  We have 

( ) ( ) 0 .V w Y w vD I u v D I DL u v u U− + − ≥ ∀ ∈  
It can be transform to 

( ) 0 .vDS u v u U− ≥ ∀ ∈                                                                                     
                                         

   We have also                                    

( )( ), ( , ) 0 .А v g L v g А v Lv g Vσ σ+ + − = ∀ ∈
 

So we get 
0 .V w Y w uD А g D А DL g g V+ = ∀ ∈                                   

It is equivalent to the inequality 
( ) ( ) 0 .V w Y w uD А u v D А DL u v u V− + − ≥ ∀ ∈  

Then  
( ) 0 .vDR u v u V− ≥ ∀ ∈                                                     

We have the equalities ( ) ( )1 2,  .w v v w v vF Q S F Q Rπ π= =  
Using last inequalities, we get (2).  

If ,U V=  then the variational inequality (2) can be 
transformed to the equality (1). 

Corollary 4. Under the conditions of Theorem 2 we have 
the variational inequality  

[ ]*
( , ) ( , ) , 0 ,v vI v y A v y р u v u U= − ≥ ∀ ∈

                      
(4)

 
where ,λ µ  is the value of the linear continuous functional  

λ at the point µ, y is the solution of the state equation 
( , ) 0,А v y =  and p is the solution of the adjoint equation 

*
( , ) ( , ).y yA v y р I v y=                                                        

(5) 

The state equation has a unique solution for our case. So 
there exists a bijection between the set of controls and the set 
of the state functions. So we have equivalence between 
controls and states. The single pair “control-state” was 
considered for solving systems described by singular systems 
[6,7]. We consider other case as an example. Let us have an 
optimization problem for a system with state constraints only. 
There exist difficulties for solving this problem by means of 
standard methods because we do not know how we can variate 
the control for saving state constraints. However we can 
rearrange the control and the state function. So we will use our 
results with state variation. 

Consider an example. Let Ω be an open bounded  
n-dimensional set. We have the equation 

z z z z g
ρ

′ − ∆ + =                                                              (6) 
in the set (0, ),Q T= Ω ×  where z′  is the derivative of z with 
respect to t, ρ is a positive constant for 2,n =  and  
0 2 / ( 2)nρ< ≤ −  for 2.n >  For all g from 2 ( )Y L Q=  
this equation has a unique solution z Mg=  from the space 

{ }1
2 00 20, ; ( ) ( ) ,  ( ),  0 ,tz z L T H L z L Q zρ

 
 ∞ =+ 

′∈ Ω ∩ Ω ∈ =  
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besides the operator M is ∗-weakly continuous (see [8], ch. VI, 
Theorem 1.1). We have 1

0 2( 1)( ) ( )H L ρ +Ω ⊂ Ω  because of 

Sobolev theorem. So we have 2 ( ).z L Q∆ ∈  Then the solution 
of our boundary problem is the point of the space 

( ){ }1
2 2 000, ; ( ) , ( ), ( ), 0 .tV z z L T H z L Q z L Q z =∞ ′= ∈ Ω ∈ ∆ ∈ =

   Let U be a convex closed subset of the space V. Consider the 
functional 

( )1
2 0 2

2 2

0, ; ( ) ( )

1
( , )

2 2
,

L T H L Q
I z g z g

χ
ζ

Ω
= − +  

where ( )1
02 0, ; ( )L T Hζ ∈ Ω   is a given function, 0,χ >  and 

the functions z and g satisfy the given equation. We have the 
problem of the minimization for the functional I under the 
condition .z U∈  Using standard technique (see, for example, 
[9]) we prove the solvability of this problem.  

Necessary conditions of optimality for nonlinear parabolic 
equations with state constraints are well known. It is systems 
with fixed final time [10-12], optimization problems with finite 
quantity of integral equalities and inequalities [13], pointwise 
constraints [14-16], and time optimal problem [17]. There 
exist a few results for the general state constraints. It uses 
regularization method [14] or Ekeland principle [18]. We will 
obtain standard variational inequality as necessary conditions 
of optimality by means of Corollary 4.  

Theorem 3. The optimal control is determined by the 
formula  

1 ,g рχ −= −                                                                           (7)               
where the function p is equal to zero on the boundary of the 
given set and for the final time; it satisfies the conditions   

1 ,z z z z рρ χ −′ − ∆ + = −                                                      (8) 

( 1) ,р р z p q
ρ

ρ′− − ∆ + + =                                               (9)                                               

( ) ( ) 0 .
Q

z q u z dQ u Uζ∆ − ∆ − − ≥ ∀ ∈∫                            (10)           

Proof. We use Corollary 4. Let the state function z of our 
system be a “control” v, and the control g be a “state function” 
y of the general problem. Determine the operator A by the 

formula ( , ) .A v y v v v v y
ρ

′= − ∆ + −  Then the operator 

Lv v v v vρ′= − ∆ +  is differentiable. So we can apply 
Theorem 2.    

We have 

( ) ( )( , ), ,
Q Q

I v y h v hdQ v hdQv ζ ζ= ∇ − ∇ ∇ = ∆ − ∆∫ ∫  

[ ] [ ]

( )
( )

*
( , ) , , ( , )

( 1)

( 1)

       

       

v v

Q

Q

A v y р h р A v y h

h h v h pdQ

p p v p hdQ

ρ
ρ

ρ
ρ

= =

′ − ∆ + + =

′− − ∆ + +

∫

∫

 

for all
 

h V∈  and for all smooth functions p that is equal to 
zero on the boundary of the given set and for the final time. 
Then the variational inequality (4) can be transformed to 

( ) ( )( 1) ( ) 0
Q

v p p v p u v dQ
ρ

ζ ρ′∆ − ∆ − − − ∆ + + − ≥ 
 ∫   

for all u U∈ . We have the equalities ( , ) ,yI v y yχ=
 

*
( , ) .yA v y р р= −    

Then we transform the adjoint 

equation (5) to 1 .y рχ −= −  So the equality (7) is true. 
Besides we get (8) because of the state equation (6). 
Determine the function q as the right side of the equality (9). 
Then the last variational inequality can be transformed to (10). 
This completes the proof of Theorem 3.  

We obtained necessary conditions of optimality in the 
standard form. It can be solved by means of iterative methods. 
However this system has peculiarities [7]. The state equation is 
applied for finding the state function as a rule, the adjoint 
function is determined from the adjoint equation, and the 
variational inequality is used for finding the control. But we 
have another algorithm. If the function q is known for the fixed 
iteration, then we find the state function z from the variational 
inequality (10). Then we determine the functions p and q from 
the equalities (8) and (9). Hence we do not solve the state 
equation and the adjoint one. It is interpreted as the formulas 
for finding the functions p and q. The control is determined by 
the formula (7). The general difficulty for the fixed iteration is 
solving of the variational inequality (10). However it is known 
numerical methods for finding the solutions of variational 
inequalities [19]. The analogical results can be obtained for 
other optimization control problems with state constraints, for 
example for elliptic equations [20]. 
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