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Abstract—We have proposed the second-derivative-free
numerical method and determined the control
parameters to converge cubically. In addition, we have
developed the order of convergence and the asymptotic
error constant. Applying this iterative scheme to a variety
of examples, numerical results have shown a successful
asymptotic error constants with cubic convergence.
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1.. INTRODUCTION

ANY researchers[4,5,6,7,8] have been iterested

M

developping the iteration methods and deriving the ,
asymptotic error constant to find the roots of nonlinear equa—(”) h(a) = &

By Corollary 1 and Corollary 2, we hav@f(z)]gl)a =0,0<
K< m—1andfla) = fl(@) = - = fm(a) =
0, f(™) =£ 0. Using L'Hospital’s rule repeatedly, we obtain

()15
" e )

The next corollary is useful to calculatg(«), ¢”(«) and
g" ().

Corollary 1: Supposef : C — C has a multiple root with
a given integer multiplicityn > 1 and is analytic in a small
neighborhood ofv. Then the functiorh(x) and its derivatives
up to order 3 evaluated at has the following properties with

lim F(x) =

Tr—x

e(m+3) () . .
Gj : jf(mi)((i))a] e N:
in( ~A(a) =0

1

tions. The Newton’s method is one of the most well-known

iteration method and is applied.

Suppose that a functiofi : C — C has a multiple zero
« with integer multiplicitym > 1 and is analytic[1,2,3] in a
small neighborhood of.. We find an approximated by a
scheme

(1)

whereg : C — C is an iteration function and, € C is given.
Then we find an approximated using an iterative method.
To solve the equation, we develoop the following scheme:

l‘n+1:g(l‘n>, TLZO, ]-a 2;"';

g(x) :x—)\f(x—uh(a:))/f’(;c) (2)
where
_J @)/ f (@), if r=a
s { lmg—o f(2)/f(x), if 2=o (3)

Let p € N be given andy(z) satisfy the following relation

=g ()] < 1,
_forlgigpfl and ¢ (o) =0, if p > 2.

(4)

Sinceg(z) is continuous atr = «, g(x) is represented by

g(x) = {

wherez(z) = 2 — ph(z) and F(x)

C{%g(x)‘ ifp=1.

9" (a) =

x — AF(x), ifr=«
x— Alimg o F(z), if 2 =a.

(5)

_ Ja—ph()
THOR
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2
(|||) h//(O[) —m
(iv) h®)(a) = m {912 - 7,3—11292}

Corollary 2: Let f stated in Corollary 1 have a multiple

root « with a given multiplicitym > 1. Let z(z) = x — ph(x)
and h(z) be defined by Eq.(3). Then the following hold:

dk
dm—kf(z)’ = [f(2)]®|a=a
=«
0, ifO<k<m-—1
£ (a) - 2 ()™, ifk=m
FMED (@) 2/ (@)™ 4 () (@) L) syl (),
= ifk=m+4+1

F(m+2) (a) . 2/ (@)™m+2 4 f(erl)(a)ﬁm_*l)ém_H)_ 2 (@)™ (a)

+0M) () - Lppya (@),
ifk=m+2

where Ly, = (5)t5=4{t - (—uh") + 3(k — 3)u*h" (a)*}.

2.. CONVERGENCEANALYSIS
We establish some relationships betweem, ¢'(«), ¢” (a)
andg"’(«), for maximum order of convergence[9,10,11].
We rewrite Eq.(2) into

(g — ) f(x) = =Af(2). (7)

where f = f(z), f' = f(z) andz = z — ph(x) are used for
concise and the symboéldenotes the derivative with respect
to x.

Differentiating both sides of Eq(7) with respectitpwe obtain

(¢ =1 +(g—a)- f'(@)= =AY (©®)
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Sinceg’ is continuous atv, we have

/o) —1={ )

1imm~>a Fl (:C) )

where Fy(z) = —(g — 2) f"(z) — A[f(2)] D/ f".

Using Corollary 2 andj(«) = «, we have the following:

if x £«

if T=q,

9)

(9 — ) f" ()]
[0, if0<k<m-—-2m>2 (10)
Tl (m =1 =D (a), if k=m-1,
(k)
0, if0<k<m-—2 m>2
[f(Z)](l)] ={ f(m)(a)(l—f%)m, ifk=m—1, (1

Substituting Eq.(10) and Eg.(11) into Eqg.(9), we have

g(a)=1=—(m—-1)(g(a) = 1) = A1 - L)"
To obtaing’(a)) = 0, we get
m_)\(l— %)m_ AL™ (12)

wheret™ =1 — £,
Differentiate both sides of Eq(8) with respectitpwe get

g +20g = 1) "+ (g—2)- [P = =Af(2)]®  (13)
We rewrite
" . F2(x)a if w 7£ @
g'(@) = { limg o Fo(x), if T=aq, (14)

where

Fy(x) = =2(¢' = 1)- [ = (g —2) - [P = A[f(2)] D/ f".
We can get the numerator & (x) by computition similar to
that done inF; ()

=2(g' = 1)f" = (g~ 2)f® = A[f(2)]?
if0<k<m-—3

0,
O™ (a)(m — Ae™), ifk=m—2
= { FOHD (@)[(m + 1) — A(E™FL — ¢ 4 gm— ) (15)

7g”f(m) (a) (m+2)2(m—1) ’Lj k=m—1,

From Eq.(14) and Eg.(15), we get
" 264

0" = iy (m D) =M e ) (1)

From Eq.(16), to havey”(«r) = 0 we get the following
relation,

m+ 1=\t — ™ et (17)
Differentiate both sides of Eq.(13) with respectztdo obtain
9@ f'+3¢" f"4+3(g' —1)- fP+(g—x)- fY = =A[f(2)]¥,

We rewrite
@) = {

where

Ri(x)7
limy—o F3(x),

if T#a

if x=aq,
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Hence, we have

3(g' — 1) fP%,
Alf(2)] 8,

=3¢" "1, ~
—(g - 2)fOE, -

0, if0<k<m-—4
£ (@) (m — At™), if k=m—3
FtD @) {m4+1 =A™ =™ YY) if k=m — 2
_ (mfl)(ms2 +AmE6) (3) p(3) | p(m+2) (o)(m 4 2)
MO (a)em 2 — pOnED ()0, IR (g — g
=™ (@) Liny2 (@)}, if k=m—1,

Consequently, we have

(20)

) (o) —
g9(e) = m(m + 1)(m + 2)

+2
02(m+2)—A{thm+2+612(tm—tm+1)mT+Lm+2(a)} - (21)

where Ly, = (5)t+=4{t - (—uh” () + 3(k — 3)u2h" (a)?}

Theorem 1:Let f : C — C have a zerow with integer
multiplicity m > 1 and be analytic in a small neighborhood
of a. Let 0,6, be defined as in Corollary 1. Leétbe a root
of p(t) defined in (20). Letxy be an initial guess chosen in
a sufficiently small neighborhood aef. Then iteration method
(2) with . = m(1 — ¢t) has order3 and its asymptotic error
constanty as follows:

1
m+ 1)(m + 2)
whereg, = —t™ 2\ (), o = m+2—X""2qa(t), qi(t) =

m —1)? m —-_m
_(mi2)(t 12>m{(i§+1+)1>t T and go(t) = £(13 — 2t + 2).

1
n= §|9(3)(04)| = 9167 + pabs,
m(

3.. NUMERICAL RESULTS

In these experiments, we choo$€0 as the minimum
number of digits of precision by assignilylinPrecision=250
in Mathematica to obtain the specified nhominal accuracy. We
set the error bound to 0.5 x 10723 for | ,, — a | < € and
evaluate thex*" order derivative of the complicated nonlinear
functions using the Mathematica[12] commabff, {xz,n}].

As an example for the convergence, we investigate the order
of convergence and the asymptotic error constant with a func-
tion f(z) = {20 — /323 cos(nrz/6) + 1/(z2 + 1)} (x — 1)
having a real zerex = 1.0 of multiplicity 2. We choosery =
0.92 as an initial guess. Table 1 verifies cubic convergence.
The computed asymptotic error constants are in sucessful
agreement with theoretical asymptotic error constantsp
to 10 significant digits. The computed root is rounded to be
accurate up to the 235 significant digits.

Our analysis has been further confirmed through more test
functions that are listed below:
fi(x) = cosx — z, a0 = 0.739085133215161
fa(z) = (sin® z — 22 4+ 1)(cos 2z + 222 — 3),

Fsy(x) = =3¢"f" = 3(g = 1)f® — (g — 2)f® — A[f(2)]®/ fa = 1.40449164821534
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TABLE |
CONVERGENCE FOR

fz) = {mlo — /323 cos(rz/6) + 1/(x2 + 1)} (x—1)
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[5] Y. H. Geum,"The asymptotic error constant of leap-frogging Newtons
method locating a simple real zerpApplied Mathematics of Computa-
tion, Vol. 66, No. 217(2007), pp.345-361.

[6] Y. K. Kim and Y. H. Geum,” A cubic-order variant of Newton’'s
method for finding multiple roots of nonlinear equation€omputer and
Mathematics with Applications, Vol. 62(2011), pp.1634-1640

[7] A. Bathi Kasturiarachi,”Leap-frogging Newton’s Method” INT. J.

MATH. EDUC. SCI. TECHNOL., Vol. 33, No. 4(2002), pp.521-527.

L. D. Petkovic, M. S. Petkovic and D. ZivkovicHansen-Patrick's

Family Is of Laguerre’s Type’ Novi Sad J. Math., Vol. 33, No. 1(2003),

pp.109-115.

Kenneth A. RossElementary AnalysjsSpringer-Verlag New York Inc.,

1980.

n T | zp — ent1/en> n
0 || 0.92000000000000( 0.800000
1 || 0.991249484161490 0.0121355 1.367268100| 3.033
2 || 0.999794338683744 0.000360502 2.685871931| 54251
3 || 0.999999872081448 3.35582 x 1— " 3.024323988 (8]
4 || 0.99999999999995Q 2.91278 x 10~ 14 3.033536758
5 1.00000000000000| 2.19446 x 1027 3.033542510
6 1.00000000000000|  1.24557 x 10752 3.033542510 [0l
7 1.00000000000000( 4.01279 x 10~ 104 3.033542510
8 1.00000000000000| 4.16489 x 10~ 2°7 3.033542510
9 1.00000000000000| —2.89905 x 1000
TABLE I
CONVERGENCE FOR VARIOUS TEST FUNCTIONS
f(z) m o en v n
fi(zx) 1 | 0490 | 6.13024x 107293 | 5 0.04875502284
fa(x) 2 | 1.290 | 4.51173x 10723 | 8 | 0.7835709502
f3(x) 3 | 1.080 | 0.x 107249 10 | 5.119146433
fa(z) 4 | 2190 | 1.18904 x 10261 | 8 0.5369302217
fs5(x) 5 | 2270 | 2.41280x 107%98 | 9 | 1.11
fo(x) 6 | 2.790 | 2.52653 x 10739 | 9 | 1.096153846
fr(x) 7 | 2590 | 1.92369 x 10~°87 | 10 | 3.591527519
fs(x) 8 | 1.590 | 1.90760 x 107°°® | 8 | 0.08249684013
fa(x) = (Sin(wx/2\/§) — a2t 4+ 3)(2? - 2)2,
a=+2

fa(z) = (2® — ldatsin(rz/4) — 32)(z? — 4z +
4)log(z — 1), & = 2.00000000000000

f5(z) = (327 — 372* + 208) sin (7x/2) log[x — 1]3,
o = 2.00000000000000

fo(x) = (@ +72=30) _ 1) (2 — 3)sin* 72/3,
o = 3.00000000000001

frlx) = (e~vsine + logll + (z — (@ —
7)sin® z(loglzr — 7 +1])%, a =7

fa(z) = (2%sin (rz/8) + =2 — 1 — 2/2)(z —
2)3sin? (r2/2), a = 2.00000000000000

Table 2 shows convergence behavior for the above test
functions with the multiplicitym, the initial guess, the least
iteration number and the asymptotic error constantin the
future study, we develop extended optimal iteration methods
of higher order.
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