
 

I. INTRODUCTION 
he main objective of designing BI system for any structure 
is to guarantee the functions for which it was built by 

maintaining its functionality and its structural integrity. The 
structural control is based on models that used to predict the 
behavior of a structure. In general, it is interesting to find out 
how changes in the input variables affect the values of the 
response variables. ANN approaches have potential value for 
predicting the behavior of the SI systems.  

Seismic-Isolation (SI) with and without supplemental 
damping for energy dissipation has proven to be an effective 

method of control for structures during seismic events. Many 
researchers investigated the use of different types of isolators 
see for example [1]-[14]. When faced with the challenge of 
limiting the Total Maximum Displacement (DTM) to practical 
limits, especially in NF sites, often times the designer would 
rely on Viscous Fluid Dampers (VFDs). Once supplemental 
damping is deemed necessary, many designers would prefer 
utilizing the linear behavior of NRB isolators combined with 
the supplemental damping provided by VFDs. This system has 
also been used in many projects in the USA and Japan [15]-
[20]. This work utilized ANN to model the behavior of the 
combined NRB-VFD system under dual-level ensembles of 14 
NF earthquake motions. To develop the database of feasible 
combinations for the SI system, the overall SI system 
performance is evaluated, for different combinations of 
damping coefficients (c) and damping exponents (α), under the 
14 earthquake records. For that purpose, a Multi-Degree-Of-
Freedom (MDOF) system is adopted and the commercial 
analysis program SAP2000 [21] was used to perform the 
Time-History Analysis (THA). The key response parameters 
considered are the DTM, the Peak Damper axial Force (PDF) 
and the Top Story Acceleration Ratio (TSAR) of the isolated 
structure compared to the fixed-base structure. The total 
number of considered THA combinations is 350 and were 
used for training and testing the neural network. The input 
patterns used in the network included the damping coefficients 
(c), damping exponents (α), ground excitation (peak ground 
acceleration, PGA and Arias Intensity, Ia). Mathematical 
models for the key response parameters are established via 
ANN. 

II. MODEL DESCRIPTION 

A. The damping system  
The fluid viscous damper force-velocity behavior is 

governed by the mathematical expression described in Eqn (1):  

sgn( )DF c v v α=                            (1) 

 
where FD is the damper force (kN), c is the damping 
coefficient (kN-(s/m)α), v is the damper extensional velocity 
(m/s), α is the velocity exponent (for a linear damper, α =1) 
and sgn denotes signum function describing the velocity sign. 
In seismic applications, nonlinear dampers with damping 
exponent less than unity are preferred due to their softening or 

Preliminary Design of Seismic Isolation 
Systems Using Artificial Neural Networks 

T 

Samer A. Barakat, Mohammad H. AlHamaydeh 
Department of Civil and Environmental Engineering at the University of Sharjah, Sharjah, UAE 

Department of Civil Engineering at the American University of Sharjah, Sharjah, UAE 

2

2

1

1

Abstract— This works attempts to implement artificial 
neural networks (ANN) for modeling Seismic-Isolation 
(SI) systems consisting of Natural Rubber Bearings and 
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earthquake ground motion. Fourteen NF earthquake 
records representing two seismic hazard levels are used. 
The commercial analysis program SAP2000 was used to 
perform the Time-History Analysis (THA) of the MDOF 
system (stick model representing a realistic five-story 
base-isolated building) subject to all 14 records. Different 
combinations of damping coefficients (c) and damping 
exponents (α) are investigated under the 14 earthquake 
records to develop the database of feasible combinations 
for the SI system. The total number of considered THA 
combinations is 350 and were used for training and testing 
the neural network. Mathematical models for the key 
response parameters are established via ANN. The input 
patterns used in the network included the damping 
coefficients (c), damping exponents (α), ground excitation 
(peak ground acceleration, PGA and Arias Intensity, Ia). 
The network was programmed to process this 
information and produce the key response parameters 
that represent the behavior of SI system such as the Total 
Maximum Displacement (DTM), the Peak Damper Force 
(PDF) and the Top Story Acceleration Ratio (TSAR) of 
the isolated structure compared to the fixed-base 
structure. The ANN models produced acceptable results 
with significantly less computation. The results of this 
study show that ANN models can be a powerful tool to be 
included in the design process of Seismic-Isolation (SI) 
systems, especially at the preliminary stages.  
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yielding nature at higher velocities and the stiffening effect at 
lower velocities. This nonlinear characteristic results in 
significant reduction of base displacement in response to 
strong ground shaking, particularly in NF situations. 
Furthermore, it puts practical limitations on the amount of 
force transferred to the structural elements. Although some 
manufacturers can produce dampers with a value as low as 0.1, 
the typically used values range from 0.4 to 0.7. In this study, 
the damping exponent values considered range from 0.4 to 1.0 
with intermediate values equally spaced at 0.15 intervals. 
Except when α=1, the damper elements are behaving 
nonlinearly and they are the only part of the model that could 
exhibit nonlinearity. The superstructure of an isolated structure 
is typically expected to remain near-elastic throughout 
significant seismic events, which justifies the linear analysis 
here. The considered values for the damping coefficient c 
range from 175 to 525 kN-(s/m)α with intermediate values 
equally spaced at intervals of 88 kN-(s/m)α. The five different 
c and α values are used to generate 25 combinations to be 
investigated in the analysis. 

B. SAP2000 modeling of the MDOF system  
To include higher modes influence in the base isolation 
behavior, MDOF systems should be considered. The numerical 
analysis of the proposed MDOF system was conducted using 
the commercial finite element code SAP2000 (CSI 2010) [20]. 
For this study, a simple lumped-mass stick model is used to 
represent a five-story base-isolated building which has been 
introduced by Kelly et al. [22]. The building structural 
parameters and isolator properties are proportioned such that 
the fundamental period of vibration is 2.5 s and the modal 
damping is 5% of critical. The MDOF system has been 
modeled in three different configurations (boundary  
 

Fig. 1. SAP2000 MDOF Model 
 

conditions) for comparison: (1) fixed base, (2) isolated without 
dampers, and (3) isolated with dampers. Figure 1 shows the 
SAP2000 model used to model the MDOF system. 

C. The ground excitation  
  There are different parameters to characterize and quantify 

earthquake demand and damage potential. The Peak Ground 
Acceleration (PGA) and Arias Intensity (Ia), first introduced 
by Arias [23], are good examples of such parameters. The 
Arias Intensity (Ia) is adopted here as the main descriptor of 
the ground motion excitations for its ability to capture the 
earthquake amplitude variation, frequency content and 
duration. The Arias Intensity can be computed using the 
following Eqn (2):  

2

0

( )
2

t

aI a t dt
g

π
= ∫                  (2) 

 
 where α(t) is the ground acceleration history in g’s, and g is 

the gravitational acceleration.  

III. RESULTS AND DISCUSSION 

A. Time-history analysis  
The commercial analysis program SAP2000 was used to 

perform the Time-History Analysis (THA) of the MDOF 
system subject to all 14 records. The analyses were performed 
for all three MDOF systems representing the benchmark fixed-
base, as well as the isolated buildings with and without 
dampers. For each of the records, three key response 
parameters were considered: the DTM, the Peak Damper 
Force (PDF) and the TSAR at the isolated and the fixed 
structures. The results for the three response parameters when 
the 25 different combinations of damping coefficients and 
damping exponents are investigated under the 14 earthquake 
records consist of 350 (5 c values×5 α values×14 records) 
THA combinations. The THA data set is further divided into 
two subsets: Set 1, consisting of THA results from 300 (c, α, 
EQ) combinations is used to produce mathematical models via 
MRA and ANN; Set 2, consisting of THA results from 50 (c, 
α, EQ) combinations is used to test the developed 
mathematical models. It should be emphasized here that the 
data from 50 testing combinations were not included in the 
modeling phase. 

B. Neural Network (NN) Analysis 
The primary objective of this section is to present a computer 

oriented method based on artificial neural networks (ANNs) 
technology to assess the structural behavior of BI systems. It is 
basically made up of a computer empirical model that maps the 
output variable or target value (DTM, PDF, TSAR) directly to a 
set of input variables (C, α, PGA, Ia) thus deducing a functional 
relationship for prediction purposes. The data utilized in this 
study were initially generated by a commercial analysis 
program SAP2000. The advantage of proposed ANNs model 
over SAP2000 computer programs is that it requires minimal 
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input data with minor intermediate computations.  
 Neural networks analysis is an information processing 

technique in which a neuron is the main element and it is an 
operator with inputs and outputs, associated with a transfer 
function, f , called a "sigmoid"  interconnected by synaptic 
connections or weights, w (plus a bias).  Fig. 2 illustrates how 
information is processed through a single neuron. The way in 
which inputs are combined, how the resulting internal activation 
level is used to produce an output, and the way in which weights 
and biases are changed (the learning rule) are collectively called 
network architecture (see Fig. 3) results in a network paradigm. 
Several network paradigms are commonly involved with each 
designed to solve specific kinds of problems.  
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Fig. 2. Schematic of a single neuron 
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Fig. 3. Typical neural networks architecture 

C. Network Model and Architecture 
The mapping of the inputs to the outputs (target values) is 

established through the neural net architecture. For the problem 
considered here, the following architecture was considered: 
feed-forward network with 5 hidden neurons, 3 output neurons, 
tansig hidden neurons and linear output neurons. Weights and 
biases joining the input nodes to the hidden nodes, and those 
bridging this latter node to the output node were initially 
assigned randomly see Fig.4. 

D. Neural Networks Solution of  BI  Systems 
The NN model considered consists of an input layer with 4 

input parameters to represent the (C, α, PGA, Ia)), an output 
layer with 3 output parameters  to represent the (DTM, PDF, 
TSAR) and one  hidden layer with 5 neurons, as can be seen in 

 
Fig. 4. Neural networks architecture 

Fig. 4. Every neuron in the network is fully connected with each 
neuron of the next layer. The most appropriate model was sought 
by training the artificial neural networks with 3, 5, and 7 hidden 
nodes. The progress of the networks' training was monitored by 
observing the output error after each training cycle. The results 
showed that the average sum squared error decreased with 
increasing number of hidden nodes. Fig. 5 shows the training 
progress of the final network with 5 hidden nodes. The 
asymptotic shape of the curve implies that the network learning 
was notably complete by the end of the training. Furthermore, 
Fig. 5 indicates that approximately 51 Epochs were required for 
convergence. 

 
 Fig. 5. Performance of the Neural network 
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E. Recall and Prediction Accuracy 
The accuracy of the adopted NNs model was first checked by 

recalling the same data initially use to train it (set 1). Once the 
model was deemed acceptable, its prediction accuracy was 
tested against a new generated set of data (set 2). It should be 
stressed that all of the data in this latter set were initially 
withheld from the neural networks. In a similar fashion as in the 
recall test, the input values from these sets of data were 
presented to the model to perform the necessary calculations and 
produce corresponding outputs. Figs. 6 to 8 respectively show a 
comparison between the theoretical SAP2000 results and the 
recalled values by the ANN models. 

For the models adopted in this work, the prediction accuracy 
is investigated. Data (Set 2) which consist of 50 randomly 
selected combinations is used to perform three ANN prediction 
tests. As mentioned earlier, all of the data in this testing set was 
initially withheld from the ANN. The results of these tests are 
shown in Figures 9 to 11. The closeness of the points to the 
equality line serves only to indicate the validity of the ANN 
models.  

 

 
Fig. 6. Recalled PDF values by ANN vs. theoretical data 

(set1) 

IV. SUMMARY AND CONCLUSION 
The feasibility of using ANN to model and predict the 

dynamic behavior of Seismic-Isolated (SI) systems was 
investigated. THA was performed using SAP2000 for three 
MDOF systems representing a typical seismic isolated 
structure with a natural period of vibration equal to 2.5 s. Two 
ensembles of seven ground motion records representing two 
hazard levels (DBE and MCE) and return periods (475 and 
950 years) were used. 

 

 
Fig. 7. Recalled DTM values by ANN vs. theoretical data 

(set1) 
 

 
Fig. 8. Recalled TSAR values by ANN vs. theoretical data 

(set1) 
 

 
Fig. 9. Predicted PDF values by ANN vs. theoretical data 

(set2) 
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Fig. 10. Predicted DTM values by ANN vs. theoretical data 

(set2) 

 
Fig. 11. Predicted TSAR values by ANN vs. theoretical data 

(set2) 
 
The range of the SI system properties covered several 

feasible solutions comparable to the state-of-the-practice 
designs. Three key response parameters were selected to be 
modeled using MRA, namely; DTM, PDF, and TSAR of the 
isolated structure compared to the fixed-base structure. The 
response parameters, as well as the characteristics of the 
ground motions were utilized to develop several ANN models. 
For each of the key response parameters, the best fitting ANN 
models were selected. The design process of SI systems is 
iterative, complex and requires considering many feasible 
alternatives. Moreover, the most widely used analysis tool, the 
nonlinear THA, is very expensive in terms of CPU time which 
adds another layer of complexity to the situation. Therefore, 
simplifying techniques are extremely valuable especially at the 
preliminary design stages. In this investigation, it was 
demonstrated that the ANN modeling is a strong candidate to 
accompany, if not replace, the nonlinear THA. Once ANN 
models are developed through performing rigorous nonlinear 
THA, such as the presented work, several design options of SI 
systems can be easily selected and compared. Since the use of 
ANN models to evaluate the key response parameters is 
significantly simpler than performing THA, much more 
feasible solutions can be readily investigated and compared. 
This can be particularly valuable in the early design stages of 
SI systems utilizing the NRB-VFD combination. 
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