
 

 

 

I. INTRODUCTION 

s the samples have a limited size, the classification in 

high dimension spaces remains one of the essential 

problems for pattern recognition. Therefore, dimension 

reduction is often required in the first step. The Artificial 

neural networks (ANNs or NNs) have been commonly used to 

classify the data and to solve any non-linear dimension 

reduction. Actually, the ANNs partially substituted the 

statistical methods in the industrial field. The Traditional 

statistical classification methods are based on the Bayesian 

decision rule, which presents the ideal classification technique 

in terms of the minimum of the probability error. However, in 

the non parametric context, applying Bayes classifier requires 

the estimation of the conditional probability density functions. 

It is well known that such task needs a large samples size in 

high dimension. The Principal Components Analysis (PCA) 

and the Linear Discriminant Analysis (LDA) are generally 

used to reduce the dimension of the feature space. They are 

applied to the original feature space in order to select a limited 

number of discrimination directions before applying non 

parametric Bayes classifier [26]. While PCA seeks for efficient 

representation directions, the Fisher LDA tries to find efficient 

discrimination directions. The LDA is commonly preferred 

over the PCA. In fact, the LDA is able to recognize the  

 

 

different classes, whereas the PCA deals with the data without 

paying any particular attention to the underlying class [1], 

[26]. 

Many authors carried out many comparison studies of neural 

and statistical classifiers. A recent review of these studies is 

presented in [14]. It aims to give a useful insight into the 

neural and statistical methods capabilities. These methods 

have widely been used to solve complex problems and have 

proven quite successful in many applications, as the dimension 

reduction and classification problems. Tam and Kiang 

compare in [12] the neural networks and the linear classifiers 

(Discriminant Analysis, logistic regression and k Nearest 

Neighbour) for bank bankruptcy prediction in Texas. They 

showed that ANNs offered better predictive accuracy than 

other classifiers. Patuwo and al evaluate, in [27], the neural 

networks performance against discriminant analysis for some 

classification problems. They proved that neural approaches 

are comparable but not better than the LDA in two-group two-

variable problems.  

In order to compare the neural and statistical techniques, 

most of researchers try to compare their accuracy prediction 

while forgetting the instability criterion of NNs . This paper 

studies the stability of different network classifier results 

compared to the statistical methods. By estimating the error 

rate probability density function (pdf) of each classifier, we 

evaluate their stabilities. In order to estimate its pdf, we apply 

the Plug-in kernel algorithm, which optimizes its smoothing 

parameter. The miss classification error is positive value, so 

we opt for the modified semi-bounded Plug-in algorithm to 

improve the pdf estimation precision since pdf support 

information is known. 

So, the present work will be organized as following: First, 

we start by presenting the main topic and briefly introduce the 

neural approaches. Here we deal with the Bayesian approach 

for the artificial neural networks. Then we lead a comparative 

study between the neural and the statistical approaches. Here 

we focus on the stability degree and visualize the results 

through stochastic simulation of particular distributions (for 

example: Gaussian, Gamma, Beta, etc…). Finally, we intend to 

test the classifiers stability and performance for the 

handwritten digits recognition problem. 
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II. NEURAL APPROACHES 

In pattern recognition, the neuronal networks can be 

categorized into three different types, depending on their 

application objectives (size reduction, classification or both). 

The first networks category is the features extractors NNs. It 

aims to reduce the learning set dimensionality thereby 

extracting the relevant primitives. The classifier NNs is the 

second networks category. Its main duty is to classify the 

extracted features regardless of the dimensionality.  The third 

networks category is the mixed NNs, which present a 

combination of both defined types. Once the first networks 

layers carry out the primitive extraction, the last layers classify 

the extracted features. An interesting example is the multilayer 

NNs that uses the back-propagation algorithm. Thanks to its 

several hidden layers, the multilayer perceptron (MLP) can 

reduce non-linearly the data dimension and extract its relevant 

characteristics. Finally, a linear separation is applied to 

classify these extracted primitives in the output layer. Based on 

the results from [19] and [11], a MLP with one hidden layer is 

generally sufficient for most problems including classification. 

Therefore, all used networks, in our study, will have a unique 

hidden layer. The number of neurons in this layer could only 

be determined by experience and no rule is specified.  

 However, the number of nodes in the input and output 

layers is set to match the number of input and target 

parameters of the given process, respectively. Thus, the NNs 

have a complex architecture and designing the optimal model 

for such application is not so easy. 

By estimating the weights matrices, the training algorithm 

aims to reduce the difference between the ANN outputs and 

the known target values, such that an overall error measure is 

minimized. The most commonly used performance measure is 

the mean squared error (MSE) defined as: 
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where tj and yj represent the target and network output 

values for the j
th

 training sample respectively, and N is the 

training samples size. The NNs training algorithms, for the 

classification, are mostly employed in a supervised learning 

process. In the proposed technique, improvements will be 

required for MLP with the back-propagation algorithm. 

A. Neural Networks limitations 

The ANN produces a black box model in terms of only crisp 

outputs, and hence cannot be mathematically interpreted as in 

statistical approaches. The most common representation mode 

of the output layer in pattern recognition is the "local 

representation" one. In this representation, each output neuron 

represents one of the classes to which samples can belong [14]. 

The MLP desired outputs provide a value close to 1 for the 

class neuron of the considered object and values close to zero 

for the other nodes. However, the ANNs outputs values are not 

similar to those desired, and they can even be negative values. 

For a discrete representation {0,1} of output neurons, Jolliffe 

normalizes, in [9], the obtained outputs, and considers the new 

normalized values as a posterior probability. In [7], the authors 

have used the Softmax transfer function, which ensures that the 

ANN outputs are homogeneous to a posterior probability. Till 

today, the quality of this approximation has never been proved. 

However, users of these networks are based on this 

approximation as a thresholding function to binarize the 

obtained outputs. This non proved approximation, the black 

box nature, the lack of control over its mathematical 

formulation and the non fixed architecture of the optimal NN 

model explain the instability of its classification results as 

against the statistical ones. Thus, after the training phase, small 

changes in the test samples can introduce a large variance in its 

prediction results. During the training phase, the NN classifier 

might learn the data very well in order to reach best results. As 

a consequence, this can lead to the NN instability; the 

overfitting may create a high variance while testing the new 

data. Indeed, the overfitting related problems got the attention 

of the literature and researches kept looking for suitable 

solutions. The classical one is the cross validation method 

[18], [21]. Combining several neural classifiers is another 

solution which may improve the performance and stability 

classification [8], [5], [13], [18]. The bias plus variance 

decomposition of the prediction error, introduced by German 

and al in [20], presents a solution for the overfitting problem. 

In order to reduce the overfitting effect of NNs, Mackay has 

proposed, in (Mackay, 1992), a probabilistic interpretation of 

neural networks learning methods, thereby using Bayesian 

techniques. 

B.  Bayesian Neural Networks 

The Bayesian approach for NNs was originally developed 

by Mackay in [3] and reviewed by Bishop in [2] and Mackay 

in [4]. This approach has been devoted to improving the 

conventional NN learning methods while adding a penalty 

term to the classical error function. The resulting function is 

defined by: 
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number of parameters) controls the model complexity.  The 

main idea is to find the optimal value of the regularization 

coefficient µ that gives the best tradeoff between the 

overfitting and the underfitting problems. This optimal value 

can be found by using probabilistic interpretation of NN 

learning which controls automatically its complexity.  

The Bayesian approach assigns a probability density 

function (pdf) to each NN parameter wi (weights, biases, 

number of neurons, NN outputs, etc). This pdf is initially 

affected to a prior distribution, and once the data have been 

observed, it will be converted to a posterior distribution using 

Bayes theorem:    
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III. APPROACHES COMPARISON 

Most of the current research almost exclusively uses the 

criterion of prediction accuracy, while evaluating classifiers 

and comparing their performance, but ignoring the fact that the 

NNs present unstable results. In this paper, a new approach to 

comparing neural and statistical classifiers is proposed. In 

addition to the prediction accuracy criterion, a stability 

comparison based on estimating classifiers error rate 

probability density functions is presented. 

A.  Error rate density estimation  

We start first by training the two classifiers to be compared, 

and then measure the error rate produced by each classifier on 

each one of N independent test sets. Let (Xi)1≤i≤N be the N 

generated error rates of a given classifier (Bayes or ANN). 

These error rates (Xi)1≤i≤N are random variables having the 

same probability density function (pdf), fX(x). The (Xi)1≤i≤N are 

assumed to be independent and identically distributed.  

We suggest to estimate the pdf of the error rates for each 

classifier using the kernel method proposed in [10] and [25], 

where the involved smoothing parameters hN  are estimated by 

optimizing an approximation of the integrated mean square 

error (IMSE). The kernel estimator of the probability density 

is defined as follows:                                        
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In our study, K(.) is chosen as the Gaussian kernel:                                                 
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The choice of the optimal smoothing parameter 
*
Nh  is very 

important. Moreover, Researchers have introduced different 

methods that minimize the integrated mean square error 
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The goodness of estimation depends on choosing an optimal 

value for the smoothing parameter. Calculating its optimal 

value, with a direct resolution of the equation (4), seems very 

difficult. We opt for the recursive resolution:  The Plug-in 

algorithm. Actually, a fast variant of known conventional Plug-

in algorithm has been developed [24]. It applies directly a 

double derivation of the kernel estimator analytical expression 

in order to approximate the function J(f). 

B. Modified semi-bounded Plug-in algorithm 

The set of observed error rates (Xi)1≤i≤N of each classifier is a 

set of positive values. In this case, the kernel density 

estimation method is not that attractive. When estimating the 

probability densities, which are defined in a bounded or semi-

bounded space dU  , we will encounter convergence 

problems at the edges : the Gibbs phenomenon. Several 

authors have tried to solve this issue and presented some 

methods to estimate the probability densities under topological 

constraints on the support. The orthogonal functions method 

and the kernel diffeomorphism method are two interesting 

solutions [22], [23]. The kernel diffeomorphism method is 

based on a suitable variable change by a C1-diffeomorphism. 

Although, it is important to maximize the value of the 

smoothing parameter in order to ensure a good estimation 

quality. The optimization of the smoothing parameter is 

performed by the Plug-in diffeomorphism algorithm which is a 

generalization of the conventional Plug-in algorithm [16]. 

For complexity and convergence reasons, we propose in this 

paper a modified semi-bounded Plug-in algorithm. This 

algorithm version is based on the variable change of the 

positive error rates: )(XLogY  . In order to define new 

classification quality measure, a sequence of three steps is 

performed: 

Step 1: using the variable change )(XLogY  , the kernel 

estimator expression becomes: 
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Step 2: iterate the conventional Plug-in algorithm for the 

transformed data. 

Step 3: compute 
x

Logxf
xf Y

X

)(ˆ
)(ˆ   

The modified semi-bounded Plug-in algorithm produces a 

sufficient precision for the densities estimation and the 

stability aspects. It tends to be a good criterion for the stability 

comparison of the different classifiers and reduction 

algorithms. 

C. Performance and stability comparison 

Some classifiers are instable, small changes in their training 

sets or in constructions may cause large changes in their 

classification results. Therefore, an instable model may be too 

dependent on the specific data and has a large variance. In 

order to analyze and compare the stability and performance of 

each classifier, we have to illustrate their error rate probability 

densities in the same figure. While the probability density 

curve on the left has the small mean, the one on the right has 

the high mean. Clearly, the classifier, whose curve is on the 

left, is the most efficient one. An instable classifier is 

characterized by a high variance. When the variance is large, 

the curve is short and wide, and when the variance is small, the 

curve is tall and narrow. As a result, a classifier with the 

largest density curve is the least stable one. Therefore, a good 
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model should find a balanced equilibrium between the error 

rate bias and variance. This criterion is basic for any stability 

and performance analysis of each classifier. 

IV. SIMULATIONS 

For the simulation phase, we propose a binary 
classification adapted to a mixture of two different 
distributions. We generate one train set including 1000 
samples for each class. With this train set, we look to find the 
optimum transformation that represents the dimension 
reduction for both PCA and LDA methods before applying the 
Bayesian rule, and then to fix the optimal NN model 
parameters for both MLP and Bayesian NN. 

In order to analyze the stability of the different approaches, 
we generate 100 supervised and independent test sets 
including 1000 samples for each class. For each test set, the 
classifier performance is evaluated by its error rate calculated 
from the confusion matrix. The error rate probability densities, 
retained for both approaches, are estimated using the modified 
semi-bounded Plug-in algorithm. 

The comparison between the statistical and neural 
classifiers used in the present work (PCA-Bayes, Fisher-Bayes, 
MLP and Bayesian NN) is first summarized by the Gaussian 

mixture classification problem. Figure 1 shows the estimated 
error rate probability densities generated for the different 
classifiers on a mixture of two homoscedastic Gaussians 
(Figure1.a), two heteroscedastic Gaussians (Figure1.b), two 
superposed Gaussians (Figure1.c) and two truncated ones 
(Figure1.d). The stability and performance of the classifiers 
are also analyzed by presenting their error rate means and 
variances in table 1.  

The first two cases ((a) and (b)) in figure 1 and table 1, 
show that the statistical classifiers (ACP-Bayes and Fisher-
Bayes) are more efficient than the neural ones (they admit the 
smallest error rate means). However for the last complex cases 
of the two heteroscedastic superposed Gaussians (c) and the 
truncated ones (d), the error rate probability density functions 
of the neural models are on the left. We conclude that these 
models are the most efficient. Although, the neural approach 
remains the least stable classifier that presents the greatest 
variance and thus the widest curve. For these two complex 
cases, the linear reduction dimension methods (PCA and 
Fisher) fail to find the optimal projection subspace. Whereas, 
the Bayesian and classical NN perform well due to their non 
linear reduction dimension capability. 

 

 

 

Figure 1: Error rate densities of PCA-Bayes (in green(--)), Fisher-Bayes (in blue(..)), MLP (in pink(*)) and Bayesian NN (in 

purple(+)). 

 

Table 1: Comparison results of ANN and statistical classifiers. 

Cases 
Distributions PCA-Bayes Fisher-Bayes MLP Bayesian NN 

Gaussian 1 Gaussian 2 Mean Variance Mean Variance Mean Variance Mean Variance 

a μ1=(1,..,1),∑1=Identity μ2=(2,..,2),∑2=Identity 0.0572 0.2287 0.0575 0.2223 0.0679 0.2697 0.0587 0.2284 

b μ1=(0,..,0),∑1=Identity μ2=(2,..,2),∑2=2*Identity 0.0042 0.1721 0.0043 0.1972 0.0084 0.4231 0.0052 0.2590 

c μ1=(0,..,0),∑1=Identity μ2=(0,..,0),∑2=2*Identity 0.3734 0.1054 0.3753 0.0983 0.3110 0.1140 0.3026 0.1094 

d 

μ1=(0,0,0) 

∑1=[0.06 0 0  

              0 0.01 0 

         0 0 0.01 ] 

μ2=(0.1,0.1,0.1) 

∑2=[0.01 0 0  

                0 0.06 0 

          0 0 0.05 ] 

0.1041 0.2804 0.0985 0.2612 0.0768 0.2877 0.0745 0.2709 

(a) (b) 

(c) (d) 
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To analyze the classifiers stability, the comparison study 
is often illustrated by a mixture of univariate distributions 
according to the Pearson System. This system presents a set 
of eight families of distributions, including Gaussian, 
Gamma and Beta ones. The Pearson system distributions are 
generally qualified by their four parameters; mean (μ), 
variance (σ

2
), skewness (β1) and kurtosis (β2). Further 

details about the Pearson system can be found in [5] and 
[17]. 

The classifiers performances and stabilities are 
compared in the sense of their error rate means and 
variances in table 2. Figure 2 shows the estimated error rate 
densities generated for the different classifiers (the figure 
cases (a,b,…,f) correspond to the cases in table 2). 

By analyzing the figures and the table above, we note 
that the neural approach admit the greatest variances, we 
can confirm that it is less stable than the statistical one. 

Using the simulations concerning the different kinds of 
stochastic distributions, we illustrate the better stability of 
the Bayesian classifier against the neural one. In addition, 
the statistical approaches are proved to perform better than 
the neural networks in the simple classification problems. 
However, the results prove that the neural classifier 
performs better if the classification task tends to become 
complex (the truncated and the superposed distributions for 
the Gaussian simulations and the Pearson System 
distributions). Although the Bayesian NN provides a better 
performance and is relatively more stable than the classical 
NN, it remains less stable than the Bayesian classifier. Thus, 
we can confirm that the Bayesian approach for ANNs 
improves the stability and performance of the conventional 
NN. 

 

 

 

Figure 2: Error rate densities of Bayesian classifier (in green(..)), MLP (in pink(*)) and Bayesian NN (in purple(+)). 

 
Table 2: Comparison results of ANN and Bayesian classifier for the Pearson system distributions. 

Cases 

Distributions 
Bayes MLP 

Bayesian NN 

Distribution 1 Distribution 2  

Type μ σ2 β1 β2 Type μ σ2 β1 β2 Mean Variance Mean Variance Mean Variance 

a 8 40 100 0 3 3 60 100 1.26 4.9 0.5044 0.1154 0.4328 0.4460 0.4172 0.2274 

b 1 10 100 0.63 3.28 3 30 100 1.26 4.9 0.4831 0.1151 0.4491 0.4501 0.4374 0.1369 

c 8 40 100 0 3 2 60 100 0 2.34 0.4607 0.1403 0.4581 0.1687 0.4548 0.1414 

d 6 40 100 1.32 5.35 2 60 100 0 2.34 0.4174 0.1213 0.4030 0.3912 0.3860 0.1950 

e 4 40 100 1.71 7.3 6 60 100 1.32 5.35 0.4531 0.1043 0.4372 0.1162 0.4430 0.1077 

f 4 40 100 1.71 7.3 2 60 100 0 2.34 0.4096 0.1184 0.3802 0.5564 0.3597 0.1643 

 

 

 

 

 

 

 

 

 

 

(a) (b) (c) 

(d) (e) (f) 
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V. APPLICATION TO HANDWRITTEN DIGIT RECOGNITION 

In this section, we study the handwritten digit 
recognition problem, which is still one of the most 
important topics in the automatic sorting of postal mails and 
checks’ registration. The database used to train and test the 
different classifiers described in this paper was selected 
from the MNIST database. This database contains 60,000 
training images and 10,000 test ones.  

For the training and test sets, we select randomly, from 
the MNIST training and test sets respectively, single digit 
images from '0 'to '3'. Each class contains 1000 images for 
the both sets. Some images are shown in Fig.3. 

 

 
        Figure 3: Sample images of MNIST database. 

 
The most difficult step in handwritten digit recognition 

is to choose the suitable features.  The chosen features must 
necessarily verify a non-exhaustive set of criteria such as 
stability, completeness, fast computation, powerful 
discrimination and invariance under the geometrical 
transformations. The invariant descriptors family proposed 
by Ghorbel in [6] satisfies the various criteria cited above. 
Thus, each image will be described by this type of 
invariants and Fourier descriptors (FD). The selected 
descriptors size is high (D = 14). In order to apply Bayesian 
rule, dimension reduction becomes necessary. The 

transformation matrices are estimated for both PCA and 
LDA methods from the training set, which transform the 
data to the appropriate dimensions subspace (two 
dimensions in our study). For the neural approach, we have 
used a MLP and a Bayesian NN with three layers having, 
respectively, 14, 10 and 4 neurons. In order to compare the 
classifiers’ stability, we evaluate the classifiers’ 
performance for 100 times using the k-folds cross validation 
algorithm (k=10 in our study). The misclassification rate 
(MCR) of each classifier is calculated on the test sets 
selected by the CV algorithm from the MNIST test set 
(N=400 images for each class). Figures 4.a and 4.b 
represent the MCR probability estimation using the four 
classifiers (PCA-Bayes, Fisher-Bayes MLP and Bayesian 
NN) for Fourier descriptors and Ghorbel descriptors, 
respectively. 

In order to obtain meaningful comparison between the 
different types of classifiers, we evaluate their performances 
and stability degrees. Figure 4 shows the error rate 
probability densities estimated using the modified semi-
bounded Plug-in algorithm. This algorithm is qualified by 
its sufficient precision on the stability aspects. In table 3, we 
summarize the MCR means and variances obtained for the 
two types of descriptors using the four classifiers. We note 
that these classifiers give the best results for Ghorbel 
descriptors. The MLP shows performance against the 
Bayesian classifier, but the superiority of its error rate 
variances proves that it is less stable than the statistical 
approaches. Although the Bayesian NN provides a better 
performance and is relatively more stable than the classical 
NN. Thus, we can confirm that the Bayesian approach for 
ANNs improves the stability and performance of the 
conventional NN. 

 

 

 

Figure 4:  Error rate densities of PCA-Bayes (in green(--)), Fisher-Bayes (in blue(..)), MLP (in pink(*)) and Bayesian NN (in purple(+)) for 

Fourier descriptors (in the left) and Ghorbel descriptors (in the right). 

 

(a) (b) 
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Table 3: Comparison results of neural and statistical classifiers on the MNIST database. 

 Fourier Descriptors   Ghorbel Descriptors 

Mean Variance Mean Variance 

PCA-Bayes 0.3599 0.0022 0.3572 0.0026 

Fisher-Bayes 0.3855 0.0014 0.3840 0.0012 

MLP 0.2469 0.0072 0.2385 0.0057 

Bayesian NN 0.0747 0.0037 0.0646 0.0011 

 

VI. CONCLUSIONS 

In this paper, a new criterion to comparing neural and 
Bayesian classifiers was proposed. In fact, a stability 
comparison based on estimating classifiers error rate 
probability density functions was presented. 

The stochastic simulations demonstrated the superiority 
of the statistical approaches stability compared to the neural 
networks stability. In addition, the Bayesian approach for 
modeling NNs enhances their performance and stability. 
This study has provided a new conception to compare the 
stability results of the neural networks and other classifiers 
kinds. Another interesting point would be also to combine 
the classifiers to improve their stabilities. 
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