

Abstract—E-polis is a serious educational game that

uses gamification to study young people's opinions about

their ideal society. Our game consists of a digital city

where players navigate to complete quests. The answer to

each quest changes the shape of the buildings and thus,

after completing the core quests, the game world will

create a unique neighborhood. In this way, we visualize the

consequences of players’ actions and simulate how their

answers impact our urban society and environment. As

such, E-polis can be used as a tool that based on some

predefined inputs (quests/questions) can evaluate and log

young people’s views on the ideal society. Our serious

game uses the Unity Game engine, and it can be used in

various socio-economic case studies such as exploring civic

engagement and social justice. Specifically, our article

reviews the literature on game engines and defines how an

educational serious game can gamify a learning

experience. Then, we present in detail the software

architecture design principles of our game and suggest a

new generic middleware for digital game developers.

Moreover, we expand on a new transition mechanism in

Unity to re-use graphics dynamically using some pre-

render real-time scene game objects. Our mechanism

allows for better execution times of digital games in less

resource-intensive computer systems when players

transition through different scenes. The authors suggest

that the technical novelty of this game lies in its

middleware software entities' separation of concerns and

this transition mechanism as a way to assist in game

development and deployment. This is because it can

provide game developers with several pre-built services

and a generic scene transition mechanism, thus helping

game developers to be more productive, reduce their costs,

and improve the quality of their games.

Keywords—Gamification, Unity Game Engine, Game

Engine Literature Review, Scene Transition Mechanism,

Serious Game Development Middleware, Training, Virtual

Reality, Learning through games, Educational Games,

Serious Game UX, Game Development Platform, Open

Source Game Development, Game Development for

Education, Game Development for Training, Serious

Games for Social Impact, Virtual Reality Learning,

Educational Art Games, Novel Serious Game.

I. INTRODUCTION
OORE’S Law, [1], suggests that the price of
electronic computing devices is decreasing, while
their capabilities, especially integrated circuits,

double approximately every two years. Though an observation
rather than a law, this statement has held since 1975 and is
widely used as a measure of rapid technological advancement.
The current era necessitates a digital transformation of
businesses and everyday lives. Big Data and the Internet of
Things are crucial terms showcasing how machine-to-machine
communication creates a vast network of devices. These
devices, empowered by increased hardware and software
capabilities, generate live data, creating the need to analyze
and understand this rapid information flow, [2].

Our lives are filled with devices like smartphones, laptops,

E-polis: An Innovative and Fun Way to
Gamify Sociological Research with an

Educational Serious Game – Game
Development Middleware Approach

Alexandros Gazis1,*, Eleftheria Katsiri1,2

1Department of Electrical and Computer, School of Engineering Engineering,
Democritus University of Thrace,

Xanthi, 67100,
GREECE

2Athena Research & Innovation Center in

Information Communication & Knowledge Technologies,
Institute for the Management of Information Systems,

Marousi, 15125,
GREECE

 Received: March 7, 2023. Revised: February 6, 2024. Accepted: March 9, 2024. Published: April 17, 2024.

M

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2024.18.3 Volume 18, 2024

E-ISSN: 2074-1316 20

tablets, and phablets that can now handle intensive computing
tasks demanding heavy CPU and RAM loads. Regardless of
whether it's a mini-computer or a cheap phone, these devices
typically have multiple threads and cores with at least 2-4 GB
of RAM, eliminating the need for a high-voltage power supply,
[3], [4]. This has led to the development of smart, low-cost,
and low-power devices for more diverse applications, [5].
More recently, these advancements have been applied in
chatbots, artificial intelligence (AI), multimedia content, and
gaming, [6]. These capabilities have made digital games more
accessible, allowing a larger audience to play locally or online
without needing a high-end computer, [7], [8], [9], [10], [11].

In the last decade, graphics optimization has accelerated due
to two key factors:

 Middleware shift: The transition from monolithic
middleware to a software-oriented architecture allows
resource-intensive processes to be shifted to the cloud
or utilize machine-specific programming languages
for optimal performance, [11], [12].

 Accessibility: This approach has enabled the
development of beautiful and complex 2D and 3D
graphics for a broader audience.

The term "digital games" encompasses all games, regardless
of graphical fidelity. As long as two or more players can
interact through multiplayer or networking features, these
games offer an interesting case study on player interaction and
how beliefs and opinions are shaped within the digital world,
[13], [14]. This has led to the emergence of a new field of
study focused not on the games themselves, but on the players
and their learning experiences. Pedagogical games, a subgenre
of digital games, prioritize education and training over pure
entertainment, [14]. While prioritizing education, serious
games (SGs) can still be fun and engaging. Their design
emphasizes learning objectives but doesn't eliminate
entertainment.

This article focuses on SGs and proposes a new game to
study young people's behavior and how interaction might
change their perspectives. The term SG emerged in the 1990s
with the development of "Brown Box," a game to educate
soldiers on radar use. Since then, SGs have been adopted in
various fields, including the armed forces, legal systems,
education, environmental concerns, social issues, and most
notably, medical services, [15].

Our article introduces a novel SG for sociological purposes.
This game simulates a digital city representing an ideal
society. As players navigate, they encounter quests without
predetermined right or wrong answers. Based on their beliefs,
players choose how to interact with these dilemmas from a set
of pre-defined questions and answers. After each choice,
players receive feedback summarizing their decisions, and the
city's shape, or even the entire city, may change to reflect the
players' democratic choices (actions). Our game design is
based on MIT's design architecture principles, incorporating
recent approaches in serious games, such as the separation of
concerns within the game's hierarchy and an emphasis on real-

world issues for impactful purposes.
Our goal extends beyond simply presenting the game. We

aim to explain its technical and theoretical contributions.
Analytically, this game is technically interesting because it
features a multi-layered cloud computing middleware that
utilizes various processes and expands upon the capabilities of
Unity's game engine. Additionally, since studying player
behavior is the primary focus, the middleware's data layer
stores player answers in both text files and local datasets.
Notably, we have strived to implement simple and resource-
efficient methods for data aggregation and storage using
CSV/JSON and SQLite datasets.

On the theoretical side, the game proposes a novel
framework for promoting empathy and understanding of real-
world issues and their impactful consequences. Targeting a
younger audience, the game seeks to explore how they
envision and dream of an ideal society.

Specifically, in the following sections, we present our
research on digital serious games, i.e., on games that have
educational or social purposes. We then define serious games
and explain the reason they are beneficial for various domains.
We also outline our research objectives and questions as
follows:

1. We review the existing literature on serious games, and
how they have been classified and described by
different authors. We also examine the platformer
genre of digital games which involve jumping and
running across platforms. We discuss how platformers
can be adapted to create serious games that are fun and
instructive.

2. We describe the innovative features of our approach,
which integrates elements of serious games and
platformers to create a game that is both entertaining
and educational. We explain how our game combines
gamification and simulation to study young people’s
opinions about their ideal society.

3. We explain the technical aspects of our game
development process, such as the choice of Unity as
our game engine, the design of the Unity scenes, and
the data collection techniques. We also introduce a
novel scene transition mechanism that renders graphics
dynamically, by using pre-rendered and real-time
scenes. This mechanism enables smooth and seamless
transitions between scenes.

4. Our conclusion summarizes key findings and proposes
future research directions for fellow scientists in the
field. Here's a breakdown of our contributions:

a. Research Problem and Differentiation: We
clearly define the research problem and
differentiate our game from existing
sociological serious games (SGs).

b. Technical and Theoretical Contributions: We
present the game's technical and theoretical
contributions, focusing on the proposed game
scene mechanics.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2024.18.3 Volume 18, 2024

E-ISSN: 2074-1316 21

c. Literature Review and Engine Selection: We
provide a detailed literature review of
industry game engines used for educational
digital game development, offering an in-
depth technical comparison of their
respective features.

d. Algorithmic Design and Implementation: We
elaborate on the algorithm we developed in
Unity, including the rendering and scene
transition mechanisms we propose. We also
discuss the chosen game engine and
development structure used for our game.

e. Data Acquisition and Middleware
Framework: We describe the acquired data
and endpoints of interest during gameplay.
We showcase our middleware framework,
encompassing the platform, engine, game,
and application layers, and propose a new
middleware with a generic content
development framework (applicable to both
sociological and non-sociological genres)
with adaptable front-end and back-end layers.

II. THE RESEARCH PROBLEM
The digital game developed in this project falls under the

category of serious games (SGs) as it extends beyond mere
entertainment. Its design principles delve into players'
behavior and choices, educating them on how their actions can
shape society. This SG, therefore, serves as a modern research
tool with broad applicability in social sciences and education.

Specifically, this SG seeks to understand the characteristics
of young individuals through a combination of quantitative and
qualitative design methods. More specifically, we have created
a virtual city where the player is presented with a preset
number of quests. These quests are in the form of questions
and since this is a SG, there isn’t any point system to reward
correct or incorrect options. As such, players must navigate the
city and answer these questions to finish the game and upon
answering each question, the players are redirected to scenes
to visualize the impact of their choices. In this way, they asses
if they have contributed to the city's progress or decline and
thus define what is their vision of their ideal city.

To create this digital word, since for each answer the
players are presented with the impact of their actions, they
grasp the importance of socio-political discussion and the
multiple parameters that define a democratic society.
Analytically, E-polis is not just another game to collect data
from players but can serve as a research tool that helps players
understand how society works and visualize the decision-
making process, [16].

III. TECHNICAL NOVELTY
Serious games (SGs) are digital games primarily focused on

player training and education. Beyond unique graphics, a
compelling design architecture and innovative goals are crucial

for an SG to capture player interest in today's market.
Our game allows users to make choices (without the option

to skip) about their vision of an ideal city. These choices are
presented through quests or dilemmas encountered while
navigating the city streets. Since this is a serious game and not
a traditional game, there are no points, rewards, a publishing
system, or a high-score feature. Players are not focused on
finding correct or incorrect answers but rather on considering
their actions and responses within the presented scenarios.

Our goal was to simulate how a digital democracy might
function if citizens could instantly see the consequences of
their actions on their city. As mentioned earlier, our game
design is heavily influenced by recent literature and the MIT
design standard. Core to our beta version and design
components is the way we propose dilemmas and set up
gameplay, drawing inspiration from these sources: [17], [18],
[19], [20], [21], [22], [23], [24]. Our research primarily
focused on serious games (SGs) and digital games within the
genres of ubiquitous computing and human-computer
interaction.

Our digital game novelty is the following:
1. Technical: we utilized the Unity game engine. Due

to its comprehensive and supportive framework
with strict adherence to DRY principles (Don't
Repeat Yourself), our technical contribution
focuses on software entity abstraction and
interaction rather than raw code implementation.
In essence, we developed a middleware with well-
defined layers based on a software-oriented
architecture. This middleware facilitates both
game engine features and separates the actual
application from the data extraction,
transformation, and loading (ETL) technique
used:

a. Our primary goal was to prioritize low-
power and resource-efficient data storage
for user responses. Initially, we utilized
CSV and JSON format datasets. We then
transitioned to SQLite, [25], due to its
user-friendly support, easy updates,
maintainability, and scalability for future
game releases. Notably, these data
storage solutions were not pre-integrated
with the Unity engine editor. We
developed them internally to extend the
editor's capabilities.

b. Similar to existing solutions, [26], [27],
we focused on the application layer to
automate task creation. These tasks
include managing player behavior,
specifically object instances and their
corresponding prefabs within our
graphical infrastructure.

c. We developed rules to categorize player
actions based on their choices. These

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2024.18.3 Volume 18, 2024

E-ISSN: 2074-1316 22

rules determine the new scenes and
levels players encounter to understand
the consequences of their decisions.
Balancing this with low-power device
compatibility for a broader audience was
challenging. Our transition mechanism
utilizes a combination of pre-defined
player behaviors and additional data
points. These data points include:

i. Points of interest (POIs) visited
by the player

ii. Time spent on difficult
dilemmas

iii. Impact of choices on the player
(tracked through location and
orientation)

iv. By analyzing these data points
d. Scene transition mechanism: For each

dilemma (quest), the player is transferred
to a new question screen. After
answering, the player is redirected to the
original screen, at the same coordinates,
but the graphics of the original scene
change interactively based on the answer.
This is imperative to our gameplay, as it
helps the player to construct a game
world based on their choices. This way,
we do not create and destroy scenes, but
rather preload the main scene of our
game and make temporary transitions to
other scenes, which define which game
objects will be triggered to generate or
destroy a certain area of the town. This
mechanism enables us to isolate the
player from the current scene and, based
on their answer to a question (the
response is mandatory to advance the
gameplay), generate a new version of the
scene with different graphics.

e. Memory Trade-off via Dynamic Building
Structure Adjustment: We've developed
a novel method for presenting buildings
in our game that dynamically adapts the
displayed structure based on player
choices. This ensures that only the most
relevant building representations are
loaded into memory, optimizing memory
usage without compromising gameplay.
Within each city block, players encounter
five potential variants of the same
building, activated based on their
responses. By selectively activating only
one variant per block, we significantly
reduce memory consumption during
gameplay, enabling a more immersive

and engaging gaming experience. This
optimization strategy balances visual
fidelity and memory efficiency.

2. Theoretical: we propose a novel generic
computational framework for social digital games.
This framework takes into account several key
properties, including how social relationships
might influence player decisions in response to
pre-defined questions within a quest system. This
serves as an interesting case study for analyzing
how players envision and conceptualize their ideal
society. The framework's flexibility allows future
researchers to adapt the quests to explore different
issues related to the concept of an ideal
community, as referenced in [28], [29].

IV. GAME ENGINES LITERATURE REVIEW

A. Overview of Digital and Educational Game

Development

Since the game's purpose is educational, there was no need
for high computer resources or complex graphics and
animations. There are many different game engines available.
Educational games (similar to our game) are typically
lightweight and do not require complex rendering mechanisms.
As such, most serious games in the recent literature either use
pre-existing solutions and frameworks, simple JavaScript code,
and frameworks, or they are hosted on a cloud server.

The key element to consider is the gameplay, specifically
whether it requires live, quick, and interactive interaction with
the player or a more laid-back approach where the player
mainly reads text dialogues and selects answers. The recent
trend has been to use JavaScript frameworks or to extract the
game to a WebGL version. This is because it is important to
have a rapid prototype ready for play as soon as possible, and
then to iterate on the game's development process to add new
features.

The digital game industry adopts a Rapid Application
Development (RAD) approach that focuses on quick feedback
from players, rather than a specific release plan for features.
Instead, the RAD approach aims to release multiple updates
with quality-focused new features throughout the development
cycle. This means that a prototype is generated based on user
design requirements which is then constantly refined,
according to player interaction and the expansion of built
modules. This way, game developers can design and construct
applications that are agile, flexible, and scalable.

B. Industry Game Engines

As our game is not a “point-and-shoot” (i.e., it requires
more actions than simply pointing and clicking on options), we
studied the following game engines:

 Unity: known for its large community of supporters
and ease of use. It is arguably one of the most popular
engines in the industry and can develop both 2D and

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2024.18.3 Volume 18, 2024

E-ISSN: 2074-1316 23

3D games, [30].
 Unreal Engine: known for its large community of

supporters and its capabilities to create high-end 3D
games, realistic graphics, and physics, [31].

 Amazon Lumberyard: known for its ease of use and
its -particularly- large library of assets. This is a free
game engine that is based on CryEngine, [32].

 AppGameKit: easy to use and preferred by beginners
and hobbyists. This game engine uses the BASIC
(Beginners' All-purpose Symbolic Instruction Code)
programming language, [33].

 Armory3D: known as a free and open-source game
engine that is particularly used by AAA and indie
developers. It uses C++ and Rust scripting languages,
[34].

 Babylon.js: known for its ease of use and
performance, this free and open-source game engine
is used to create 3D games for the web, [35].

 Buildbox: known for its ease of use and its drag-and-
drop interface function to create games. Due to this
functionality, it is popular with beginners and indie
developers, [36].

 Cocos Creator: known for its portability and
performance, this free and open-source game engine
is used to create 2D and 3D games, [37].

 Cocos2d-x: popular for mobile game development.
This free and open-source game engine uses C++,
Lua, and JavaScript, [38].

 Corona SDK: known for mobile game development.
This game engine uses Lua, [39].

 CryEngine: known for its complex capabilities and
properties, this engine is selected by many AAA
developers, as well as indie developers. This engine
uses C++ and Lua, [40].

 Defold: ease of use and small sized. This free and
open-source game engine is used to create 2D games,
[41].

 Flame Engine: this engine is used by indie
developers. It is free (open-source), and uses C++ and
Lua, [42].

 Gambas: Similar to AppGameKit, this engine is
known for its ease of use and is preferred among
beginners and hobbyists. This game engine uses the
BASIC (Beginners' All-purpose Symbolic Instruction
Code) programming language, [43].

 GameMaker Studio 2: Like Buildbox, this engine is
known for its ease of use and its drag-and-drop
interface function to create games. Due to this
functionality, it is popular with beginners and indie
developers. It uses a GML scripting language for its
drag-and-drop interface, [44].

 Gdevelop: this engine is easy to use, thus it is
preferred by beginners and indie developers. This is a
free and open-source game engine that uses a visual
programming language, [45].

 Godot: known for its ease, it is used by beginners and
indie developers. It is considered one of the most
upcoming engines. It was first introduced in 2014 but
it has a active community. It is free to use and has an
open access license that uses GDScript, a Python-
inspired scripting language for development, [46].

 Leadwerks: known as a free and open-source game
engine that is particularly used by AAA developers,
and indie developers. It uses C++, [47].

 Ogre: is a well-established game engine that is highly
regarded and used in the indie development market
that uses C++, thus enabling fast execution times and
less resource-intensive computing devices, [48].

 Open3D Engine: an open-source and free-to-use and
develop/distribute engine that enables developers to
create complex games. Similar to Orgre, it is a well-
established game engine that is highly regarded and
used in indie development that uses C++ and Python,
[49].

 Panda3D: known for its flexibility and performance.
It is a free and open-source game engine that is used
to create 3D games, [50].

 Solar2D: known as a free and open-source game
engine that focuses on portability and ease of use
known. It is create mostly used for 2D game
development for mobile devices, [51].

 Stencyl: known as a free and open-source game
engine that focuses on ease of use. It is mostly known
for its block-based programming language paradigm
that due to its gradual learning curve has made it
popular with students and educators worldwide, [52].

 Stride: is a well-established game engine that is
highly regarded and used in the indie development
market that uses known C++ and Lua, [53].

 Torque 3D: similar to Stride, it is a well-established
game engine that is highly regarded and used in the
indie development market It uses C++ and Lua, [54].

 Torque: known as a free and open-source game
engine that focuses on flexibility and community
support during development. It can be used for 2D
and 3D game development known, [55].

 Unigine: is a well-established game engine that
focuses on known realistic graphics and physics. This
engine is free to use and its open-source to license is
usually used for 3D game development focusing on
high-end devices, [56].

C. Industry Game Engines: Literature Review

This section aims to provide a top-to-bottom approach to
the game engines used in the industry. Specifically, we present
in detail a comparison of the most widely used and recognized
game engines presented in the previous chapter. Then, we
showcase our in-detail comparison in Table I which focuses on
the different multimedia entity modules (effects, graphics
sounds, etc.) that are used in each game engine. This way we

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2024.18.3 Volume 18, 2024

E-ISSN: 2074-1316 24

highlight the differences between each engine. For example,
Unity and Unreal Engine are known for their advanced and
complex rendering capabilities, while CryEngine has realistic
character animations.

Moreover, we present an analysis of the different
technologies used in each game engine (Table II). We provide
an overview of each software framework type, including 3D
support, physics engine, and target platforms. This information
is crucial when deciding which engine to use to develop a
game, as it is closely related to the unique properties of the
project as well as time and budget constraints. It is worth
noting that most game engines are open source, except for
Corona SDK, Torque, AppGameKit, GameMaker Studio 2,
Buildbox, Stride, Amazon Lumberyard, Unity, Unreal Engine,
CryEngine, and Leadwerks, which use proprietary software
licenses.

TABLE I. GAME ENGINES COMPARISON BASED ON
RENDERING, ANIMATION, AND SOUND PROPERTIES

Game Engine Rendering Animation Sound

Babylon.js

WebGL-based
rendering

Support for a
variety of
lighting and
shading models

Skeletal
animation
system

Support for
Web Audio API
and other audio
libraries Gdevelop Sprite-based

rendering

Support for a
variety of
lighting and
shading models

GameMaker
Studio 2
Defold

Cocos2D-x

Corona SDK

Scene graph-
based rendering

Support for a
variety of
lighting and
shading models

-

Support for
OpenAL and
other audio
libraries

Unreal Engine
Physically
based
rendering, real-
time lighting,
shadows, and
reflections

Support for a
wide range of
rendering
pipelines

Detailed
animation
system with
support for
skeletal,
facial, and
procedural
animation

Built-in support
for spatial
audio,
sound effects,
and music

Unity
Leadwerks
Godot
Flame Engine
CryEngine
Cocos Creator
Armory3D

Amazon
Lumberyard

Gambas Basic rendering
capabilities

Basic
animation
capabilities

Basic
sound
capabilities

Buildbox
AppGameKit

TABLE II. GAME ENGINES COMPARISON BASED ON
SOFTWARE PROPERTIES (3D SUPPORT, PHYSICS,

PLATFORM)

Game Engine
3D

support

Physics

engine
Build Platform

Armory3D Yes Bullet
Windows, macOS,
Linux, Android, iOS,
Web, WebGL

Corona SDK Yes Chipmunk iOS, Android

Babylon.js Yes Cannon Web, WebVR

Gambas Yes N/A Windows, Linux

Panda3D Yes Bullet

Windows, macOS,
Linux

Torque 3D Yes Bullet
Torque Yes Bullet
Solar2D No N/A

AppGameKit No Newton

Unigine Yes PhysX

Ogre Yes Bullet

Flame Engine Yes Bullet Windows, macOS,
Linux, Android, iOS

Open3D Engine Yes Bullet

Windows, macOS,
Linux, Android, iOS,
Web, WebGL

Gdevelop Yes Bullet

Stencyl Yes Bullet

GameMaker
Studio 2 Yes Bullet

Godot Yes Bullet

Cocos2D-x Yes Bullet

Defold Yes Bullet

Buildbox No N/A

Cocos Creator Yes PhysX

Stride Yes PhysX

Amazon
Lumberyard Yes PhysX

Windows, macOS,
Linux, Android, iOS,
Web, WebGL, Xbox
One, PlayStation 4

Unity Yes PhysX

Windows, macOS,
Linux, Android, iOS,
Web, WebGL, Xbox
One, PlayStation 4,
Nintendo Switch,
Stadia

Unreal Engine Yes PhysX

Windows, macOS,
Linux, Android, iOS,
Web, WebGL, Xbox
One, PlayStation 4,
PlayStation 5, Xbox
Series X/S, Nintendo
Switch

V. IMPLEMENTATION
In the following sections, we will present the software

architecture of our implementation. First, we explain the scene
transition mechanism we developed to store the graphics,
physics, and properties of our game. Subsequently, based on
Unity's architectural design principles, we showcase the scenes
of our game in detail. Finally, we focus on the data acquisition

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2024.18.3 Volume 18, 2024

E-ISSN: 2074-1316 25

element of our game and the different things we need to
consider when implementing the extract, transform, and
loading solutions.

A. Graphics Rendering and Scene Transition Mechanism

in Unity

1) Overview of the Mechanism

As mentioned in the previous sections, the technical novelty
of this article is the scene transition mechanism. This
functionality allows players to transition to different scenes,
interact with quests via dialogue, and shape the town's
buildings. This is of the utmost importance, as it defines how
the players’ gameplay constructs the unique city and its
characteristics, which can later be used to study their answers.
It is worth noting that the purpose of the game is not only for
players to complete a set of tasks, but also to study their
behavior and choices when presented with a visual, real-world
outcome of their options.

Firstly, we needed to determine the overall components
needed to construct this mechanism, which was to compare
two different architectural choices. The first approach involved
cloning the scene. This meant that each time the player
interacted with a point-and-click quest or went through
dialogue, we cloned the current scene's graphics and
transitioned them to the next scene. Afterward, based on their
answer, we would reload the original scene and compare the
objects from the hierarchy to recreate the game world as it was
before, and then add the changes based on each question.
Later, we decided that it would be far more performance-
effective to store the body position (X, Y, Z axis) and the head
rotation (Euler angles) to restore the player to the same
position and scene to witness how their choice changed or
redefined it.

We also tried to enhance the performance of our solution by
shifting the canvas statuses. Specifically, we disabled the
canvas and saved the game object of the player (mesh capsule)
coordinates. This happened via a prefab object that
automatically generated the necessary scripts to store the
player's coordinates when the player entered its point of view.
The prefab object also disabled the current canvas and enabled
a new one. Upon collision with this prefab, a switch is
generated which is assigned to a specific quest (thus, no quest
can be presented more than once). The player is presented with
a task and must complete it to proceed. Upon successful
completion, we store their answer and destroy the prefab, thus
disabling the quest from our overall gameplay. The same
mechanism was later via actual graphics, instead of a prefab of
a canvas.

2) Algorithms of the Scene Transition Mechanism

The inner work of this algorithm’s first implementation is
presented in Table III. Similarly, in Table IV we present the
extended and improved version where instead of prefabs, we
rendered actual building blocks based on the quest’s
completion. This way, the player constructed the future based
on his answer and shaped the city’s buildings. Lastly, it is

noted that the algorithm presented in this article uses
Pseudocode, for explanation purposes only. The actual code
was written in Unity, thus as per the game engine’s
requirements it is in C# scripts.

TABLE III. INITIAL ALGORITHM USED FOR DILEMA WITH

PREFAB COLLISION
Disable all canvases

disable_all_canvases()

When entering the point of view of a prefab:

Store the player's coordinates and Euler angles

store_player_coordinates_and_euler_angles()

Create a boolean switch to enable the dilemma

enable_dilemma_switch()

While the player is in the point of view of the

prefab:

while in_prefab_point_of_view():

 # Check if there is a collision

 if collision_occurs():

 # Enable the dilemma switch

 enable_dilemma_switch()

 # If the dilemma switch is enabled:

 if dilemma_switch_enabled():

 # Get the player's answer to the dilemma

 get_player_answer()

 # Disable the dilemma switch

 disable_dilemma_switch()

When leaving the point of view of the prefab:

Destroy the prefab

destroy_prefab()

Regarding Table III, we specify the modules of each function

as follows:
 disable_all_canvases() function disables all canvases

in the game.
 store_player_coordinates_and_euler_angles()

function stores the player's coordinates and Euler
angles in variables. The Euler angles represent the
player's head orientation and body position.

 enable_dilemma_switch() function sets the
dilemma_switch variable to True.

 in_prefab_point_of_view() function returns True if
the player is currently in the point of view of a prefab,
and False otherwise.

 collision_occurs() function returns True if the player
collides with something, and False otherwise.

 disable_dilemma_switch() function sets the
dilemma_switch variable to False.

 get_player_answer() function prompts the player to
answer the dilemma and returns their answer.

 destroy_prefab() function destroys the prefab that the
player is currently viewing.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2024.18.3 Volume 18, 2024

E-ISSN: 2074-1316 26

TABLE IV. ADVANCED ALGORITHM USED FOR DILEMMA
WITH GRAPHIC RENDERING

Disable all canvases

disable_all_canvases()

When entering the point of view of a prefab:

Store the player's coordinates and Euler angles

store_player_coordinates_and_euler_angles()

Create a boolean switch to enable the dilemma

enable_dilemma_switch()

While the player is in the point of view of the

prefab:

while in_prefab_point_of_view():

 # Check if there is a collision

 if collision_occurs():

 # Enable the dilemma switch

 enable_dilemma_switch()

 # If the dilemma switch is enabled:

 if dilemma_switch_enabled():

 # Get the player's answer to the dilemma

 get_player_answer()

 # Disable the dilemma switch

 disable_dilemma_switch()

When leaving the point of view of the prefab:

Destroy the prefab

destroy_prefab()

Regarding Table IV, we specify the modules of each

function as follows:
 load_scene_view_from_above() - This function loads

a scene that shows the new city that the player has
created from above.

 check_for_modules_of_completion() - This function
checks if the player has completed all of the required
quests and tasks. This is important because it ensures
that the player has fully experienced the game moving
through all its phases.

 destroy_previous_objects_and_scenes_for_performa

nce() - This function destroys any objects and scenes
that are no longer needed. This frees up memory and
improves the game's performance.

 check_database_answers_and_connectivity() - This
function checks if the players’ answers to the quests
have been saved correctly and that they are still
connected to the game server. This is important
because it ensures that the players’ progress is
preserved and that they can play the game without
interruptions.

 check_screenshot_functionality() - This function
checks if the player can take screenshots of the game.
This is important because it allows the player to
capture and share their gaming experience.

 save_game() - This function saves the player's
progress. This ensures that the player can pick up
where they stopped if needed.

B. Game Engine Used

 After studying the most widely used game engines in the
industry (OpenSimulator, Godot, CryEngine, GameMaker),
and taking into account Table I and Table II, we concluded
that the most interesting game engines based on the specific
elements of our game (i.e. a light, not resource intensive
interaction educational game) were Unity and Unreal engine.

Several game engines exist, each with its strengths and
weaknesses. After evaluating both Unity and Unreal Engine,
we ultimately chose Unity for this project. While Unreal
Engine might boast faster execution times, Unity's developer-
friendliness and platform independence were decisive factors.
Unity's versatile export settings allow developers to target
various platforms and operating systems more easily compared
to Unreal Engine, [57]. For the development of the game
described in this paper, we utilized Unity version 2020.3.24f1
with a private license. The hierarchy of our game objects is the
following (Figure 1):

Fig. 1 Our SG’s Unity’s hierarchy view as presented in the Unity
Editor, [58]

Player data will be collected and analyzed using IBM SPSS
Statistics software. We anticipate a low data volume, with a
single test group playthrough generating less than 1,000
records due to our focus on efficient data storage techniques.
To extract data, we incorporated a mesh grip terrain under the
graphics of each scene, allowing the player to move to specific
coordinates. This enables us to record any movements in any
direction. A view of the developers' framework is presented in
Figure 2. It showcases the game's axis, the terrain divided into
a grid, and the actual buildings used.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2024.18.3 Volume 18, 2024

E-ISSN: 2074-1316 27

Fig. 2 The Unity Editor gird to the developer's view regarding the
movement of the player for saving their gameplay actions, [58]

 Our game generates two main datasets in the form of
tables. The first table, titled "Player Actions," stores
information about player choices. This includes the avatar's
name, the number of the quest encountered, a short description
of the quest text, the player's answer to the quest, and a
timestamp for when the answer was submitted. The second
table, focused on "Player Movements," tracks data on player
movement throughout the game. It captures the X, Y, and Z
coordinates of the player's location on the map, the orientation
of the player's head using Euler angles for each axis, and a
timestamp for each record collected at a preset sampling rate.

 This data can be exported in various formats, including
CSV, XML, YAML, or JSON, allowing for interaction with
most industry-standard data analysis software tools.

VI. GAME DEVELOPMENT MIDDLEWARE

A. Middleware for Game Deveopers

Middleware is a software layer between the game engine
and the underlying operating system and hardware, [59]. It
provides a set of services that game developers can use to
develop games without worrying about how the game engine
works, [60]. In this final section, we present the main
architectural design principles of the middleware we
developed to construct a serious game, using the Unity game
engine. The mechanism we present is the main contribution of
our middleware architecture; instead of using the asset-prefab-
scene and script segregation, we expanded our middleware as
follows:

 Platform layer: This layer provides a common
interface to the underlying operating system and
hardware. This allows game developers to write code
that is portable to different platforms. This mainly
incorporates the separation of concerns to the asset-
prefab-scene and script, as mentioned in the following
review paper, [29].

 Engine layer: This layer provides a set of services
that are common to most game engines, such as scene
management, rendering, and physics, as well as
modules. This includes Section 5.1 Scene Transition

Mechanism and the algorithms we developed.
 Game layer: This layer provides services that are

specific to the game, such as character control, AI,
and gameplay mechanics. This includes the analysis
of the Acquiring Player’s Data module.

 Application layer: This layer provides services that
are specific to the application, such as user interface,
input handling, and network communications. While
we used Unity, properties are available in previous
sections.

B. Generic Content Middleware for Game Development

Similarly, middleware can also be defined based on the
operations that were described in this article. Since this is a
software implementation using the Unity game engine, we
briefly present the front-end and back-end layers. These layers
can be incorporated into the above. However, to promote the
functionality of the project and because this is an educational
serious game, we chose to expand them into separate layers:

1. The front-end layer is responsible for all user

interactions, such as rendering the game world and
handling user input.

2. The back-end layer is responsible for all the logic of our
game, such as scene transitions, different game states for
animators, and navigation through the game world to
complete quests.

Specifically, while developing our generic game
development middleware, we have focused on separating our
entities based on their application processes. In this way, we
segregated our initial monolithic application into many
separate independent layers thus making our system modular
and easier to scale and maintain.

1) Front-end layer

 Prefab design tools: the prefabs are needed to reduce
the use of the same objects multiple times in the
hierarchy. As such, the case of a tool specific for
designing prefabs with a visual editor for scripting
and debugging is needed.

 Terrain meshing and structure monitoring: this layer
serves as an intermediate for the necessary services
that generate the terrain (meshes) of our game.

 Coordinate and action monitoring: Provides the
processes to track and monitor the location
(coordinates) of the players’ actions. This also
includes NPCS and any other object that may interact
with the player.

 Graphics and scene management: Provides processes
for rendering the game graphics. It is also responsible
for handling the scene transition mechanism, the
lightning mechanism, and the re-use of prefabs
(copies of new objects and destroying the unused
ones).

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2024.18.3 Volume 18, 2024

E-ISSN: 2074-1316 28

 AI movement and camera interaction: Provides the
processes to modify the movement of AI playable
characters and the re-adjustment of the player's main
camera component.

 Google Maps 3D model extraction: Provides
displaying for loading and extracting 3D models
based on Google Maps location and importing them
as fbx to the game project.

 UI canvas for questions and dialogue: Provides
processes for developing and displaying UI textbox
thus simulating quests and a dialogue based for.

 Tree and building rendering: Provides processes to
render the game world in general and the dynamic
décor of our world (rendering of trees buildings, etc.).

 Particle effects and sound effects: Provides processes
creating and handle the particle effects of our prefabs
when answering a dilemma/quest and the respective
sound effects when creating and destroying each
prefab object.

2) Back-end layer

 Prefabs: Provides for the processes to manage
prefabs from generating/destroying them to defining
their properties.

 Points of view: Provides the processes for managing
the player camera. This means defining the point of
view of an individual, or an AI NPC and its range of
actions.

 Zone triggering: Provides processes to handle the
range of the triggering of game events. This must be
achieved via defining zones of action where the
prefabs will operate.

 Switch actions: Provides processes for creating
automation switch operations. This means that when
the player enter a specific zone, certain operations
will be triggered that will act as switches for each
quest. This means that for a new operation to load, an
old one will need to be deactivated thus acting as a
true-false switch for the layering and order of each
operation.

 Quest and dilemma agents: Provides processes
responsible for handling different quests. This means
that the dilemmas presented to each player must
initiate and end with a preset game object that will be
closely linked with an action and event.

 NPC action management: Provides processes to
handle the overall actions of NPCS as well as the
permeated interactions and action id that can be
instantiated.

 Player interaction scenarios: Provides all the
necessary processes for the actual player(s)
interactions for completing the game. This means
providing a logic/scenario on how to start/end the
game and how a player will understand the game
logic, rules, and physics applied.

 Open vs Close answered questions: The prefab
mechanism allows us to designate questions as either
one-time or re-answerable, enabling them to appear
multiple times throughout the game. These responses
are critical for our analysis of player behavior and the
evolving structure of the buildings. This flexibility is
paramount for both the statistical analysis that may be
incorporated at the end of the game (i.e., augmenting
sample size) and the dynamic definition of the game's
blueprint. By enabling or disabling re-answerable
questions, we can adjust the range of choices and
properties for the generated buildings, influencing the
overall structure of each gameplay experience while
also optimizing the database and computer resources
required for smooth operation.

VII. CONCLUSION
 This paper presents our novel serious game (SG) and the

middleware we developed to create it. We also explore a
generic middleware framework for separating front-end and
back-end processes for objects and mechanics during
development within the Unity game engine. As for the SG’s
use for social research, it offers scientists the ability to
showcase the impact of player actions. This allows social
researchers to examine the contrasting effects of right and left-
wing choices within the game's simulated environment. While
recent literature often focuses on the outcomes and answer
quality, we aim to bridge the gap by explaining the
development tools and methods behind our game.

We hope future developers will consider implementing our
proposed middleware layer(s). This approach could provide a
more universally accepted way to develop games using game
engines. The middleware optimizes and automates the creation
of communication and application/game layers for each SG,
fostering efficiency, [61], [62], [63], [64].

Our next steps involve recruiting more players to gather data
and feedback on the game's graphics and quest design. This
will help us refine the experience for future iterations. To aid
future social science research, we plan to develop a basic
clustering algorithm using K-Means or DBSCAN on player
data for each task. This will allow researchers to identify
patterns in player behavior and decision-making. We also
propose creating an online tool that exports the final city
structure based on player choices. This will allow players to
compare the impact of their decisions and those of others on
the city's development. For broader accessibility, we'll explore
exporting the game to WebGL or another cloud-based
architecture, enabling a wider global audience to participate.
Finally, to enhance user engagement, we're investigating
transitioning the game from keyboard controls to VR headsets.
This would involve adapting the game for a virtual 3D world.

 These future steps hold promise for enriching the player
experience, advancing social science research using games,
and fostering a more globally inclusive platform.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2024.18.3 Volume 18, 2024

E-ISSN: 2074-1316 29

ACKNOWLEDGMENT
. This article is an extended version of the conference paper

titled “E-polis: A Serious Game for the Gamification of
Sociological Surveys,” published in the proceedings of the
International Conference on Applied Mathematics &
Computer Science, [58].

References
[1] Chowdhury, J., Sarkar, A., Mahapatra, K., & Das, J. K.

(2024). More-than-Moore Steep Slope Devices for
Higher Frequency Switching Applications: A Designer’s
Perspective. Physica Scripta.
https://www.doi.org/10.1088/1402-4896/ad2da2

[2] Gazis, A., & Katsiri, E. (2021). Smart home IoT sensors:
Principles and applications a review of low-cost and low-
power solutions, International Journal on Engineering

Technologies and Informatics, 2(1), 19-23.
 https://doi.org/10.51626/ijeti.2021.02.00007
[3] Mudaliar, M. D., & Sivakumar, N. (2020). IoT based

real-time energy monitoring system using Raspberry Pi.
Internet of Things, 12, 100292.
https://doi.org/10.1016/j.iot.2020.100292

[4] Campagnaro, F., Steinmetz, F., & Renner, B. C. (2023).
Survey on low-cost underwater sensor networks: from
niche applications to everyday use. Journal of Marine

Science and Engineering, 11(1), 125.
 https://doi.org/10.3390/jmse11010125
[5] Sriraam, N., Srinivasulu, A., & Prakash, V. S. (2023). A

Low-Cost, low-power flexible single-lead ECG textile
sensor for continuous monitoring of Cardiac Signals.
IEEE Sensors Journal.
https://doi.org/10.1016/j.icte.2024.03.003

[6] Ozkan-Ozay, M., Akin, E., Aslan, Ö., Kosunalp, S.,
Iliev, T., Stoyanov, I., & Beloev, I. (2024). A
Comprehensive Survey: Evaluating the Efficiency of
Artificial Intelligence and Machine Learning Techniques
on Cyber Security Solutions. IEEE Access.
https://doi.org/10.1109/ACCESS.2024.3355547

[7] Rogers, K., Karaosmanoglu, S., Altmeyer, M., Suarez,
A., & Nacke, L. E. (2022, April). Much realistic, such
wow! a systematic literature review of realism in digital
games. CHI Conference on Human Factors in

Computing Systems (pp. 1-21), New Orleans, LA, USA.
 https://doi.org/10.1145/3491102.3501875
[8] Tecedor, M. (2024). Digital storytelling: changing

learners’ attitudes and self-efficacy beliefs. Applied

Linguistics, 45(1), 65-87.
https://doi.org/10.1093/applin/amad002

[9] Ishak, S. A., Hasran, U. A., & Din, R. (2023). Media
Education through Digital Games: A Review on Design
and Factors Influencing Learning Performance.
Education Sciences, 13(2), 102.

 https://doi.org/10.3390/educsci13020102
[10] Chowdhury, M., Dixon, L. Q., Kuo, L. J., Donaldson, J.

P., Eslami, Z., Viruru, R., & Luo, W. (2024). Digital
game-based language learning for vocabulary

development. Computers and Education Open, 6,
100160. https://doi.org/10.1016/j.caeo.2024.100160

[11] Peterson, M. (2023). Digital simulation games in CALL:
A research review. Computer Assisted Language

Learning, 36(5-6), 943-967.
 https://doi.org/10.1080/09588221.2021.1954954
[12] Susanti, A., Darmansyah, A., Naqsyahbandi, F., &

Muktadir, A. (2024). Analyzing student learning style
profiles for differentiated learning in merdeka curriculum
in elementary schools. Cendikia: Media Jurnal Ilmiah
Pendidikan, 14(3), 209-223.
https://doi.org/10.35335/cendikia.v14i3.4589

[13] Arjoranta, J. (2019). How to define games and why we
need to, The Computer Games Journal, 8(3-4), 109-120.

 https://doi.org/10.1007/s40869-019-00080-6
[14] Gumbi, N. M., Sibaya, D., & Chibisa, A. (2024).

Exploring Pre-Service Teachers’ Perspectives on the
Integration of Digital Game-Based Learning for
Sustainable STEM Education. Sustainability, 16(3),
1314. https://doi.org/10.3390/su16031314

[15] Tang, Z., & Kirman, B. (2024). Exploring Curiosity in
Games: A Framework and Questionnaire Study of Player
Perspectives. International Journal of Human–Computer
Interaction, 1-16.
https://doi.org/10.1080/10447318.2024.2325171

[16] Tekinbas, K. S., & Zimmerman, E. (2003). Rules of
play: Game design fundamentals, MIT Press.

 https://mitpress.mit.edu/9780262240451/rules-of-play/
[Accessed on 08/04/2024]

[17] Seaborn, K., & Fels, D. I. (2015). Gamification in theory
and action: A survey, International Journal of human-

computer Studies, 74, 14-31.
 https://doi.org/10.1016/j.ijhcs.2014.09.006
[18] Taylor, T. L. (2018). Watch me play. In Watch Me Play,

Princeton University Press.
 https://doi.org/10.1515/9780691184975
[19] Tsai, Y. L., & Tsai, C. C. (2020). A meta‐ analysis of

research on digital game-based science learning, Journal

of Computer Assisted Learning, 36(3), 280-294.
 https://doi.org/10.1111/jcal.12430
[20] Gupta, A., Lee, S., Mott, B., Chakraburty, S., Glazewski,

K., Ottenbreit-Leftwich, A., & Lester, J. (2024, March).
Supporting Upper Elementary Students in Learning AI
Concepts with Story-Driven Game-Based Learning. In
Proceedings of the AAAI Conference on Artificial
Intelligence (Vol. 38, No. 21, pp. 23092-23100),
Vancouver, Canada.
https://doi.org/10.1609/aaai.v38i21.30354

[21] Breien, F. S., & Wasson, B. (2021). Narrative
categorization in digital game-based learning:
Engagement, motivation & learning, British Journal of

Educational Technology, 52(1), 91-111.
 https://doi.org/10.1111/bjet.13004
[22] Schöbel, S., Saqr, M., & Janson, A. (2021). Two decades

of game concepts in digital learning environments–A
bibliometric study and research agenda, Computers &

Education, 173, 104296.
 https://doi.org/10.1016/j.compedu.2021.104296

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2024.18.3 Volume 18, 2024

E-ISSN: 2074-1316 30

https://doi.org/10.51626/ijeti.2021.02.00007
https://doi.org/10.3390/jmse11010125
https://doi.org/10.1145/3491102.3501875
https://doi.org/10.3390/educsci13020102
https://doi.org/10.1080/09588221.2021.1954954
https://doi.org/10.1007/s40869-019-00080-6
https://mitpress.mit.edu/9780262240451/rules-of-play/
https://doi.org/10.1016/j.ijhcs.2014.09.006
https://doi.org/10.1515/9780691184975
https://doi.org/10.1111/jcal.12430
https://doi.org/10.1111/bjet.13004
https://doi.org/10.1016/j.compedu.2021.104296

[23] Gui, Y., Cai, Z., Yang, Y., Kong, L., Fan, X., & Tai, R.
H. (2023). Effectiveness of digital educational game and
game design in STEM learning: a meta-analytic review,
International Journal of STEM Education, 10(1), 1-
25.https://doi.org/10.1186/s40594-023-00424-9

[24] Negahban, A. (2024). Simulation in engineering
education: The transition from physical experimentation
to digital immersive simulated environments. Simulation,
00375497241229757.
https://doi.org/10.1177/00375497241229757

[25] Gaffney, K. P., Prammer, M., Brasfield, L., Hipp, D. R.,
Kennedy, D., & Patel, J. M. (2022). Sqlite: past, present,
and future, Proceedings of the VLDB Endowment,
15(12), 3535-3547, Vancouver, Canada .

 https://doi.org/10.14778/3554821.3554842
[26] Linowes, J. (2015). Unity virtual reality projects, Packt

Publishing Ltd.
 https://www.packtpub.com/product/unity-virtual-reality-

projects-second-edition/9781788478809 [Accessed on
08/04/2024]

[27] Nusrat, F., Hassan, F., Zhong, H., & Wang, X. (2021,
May). How developers optimize virtual reality
applications: A study of optimization commits in open
source unity projects, IEEE/ACM 43rd International

Conference on Software Engineering (ICSE) (pp. 473-
485). IEEE, Madrid, Spain.

 https://doi.org/10.1109/ICSE43902.2021.00052
[28] E-polis http://www.e-polis.pspa.uoa.gr. [Accessed on

21/03/2024]
[29] Gazis, A., & Katsiri, E. (2023). Serious Games in Digital

Gaming: A Comprehensive Review of Applications,
Game Engines and Advancements, WSEAS Transactions

on Computer Research, 11, 10-22.
 https://dx.doi.org/10.37394/232018.2023.11.2
[30] Unity Technologies Github Repository.

https://github.com/Unity-Technologies. [Accessed on
21/03/2024]

[31] Unreal Engine Github Repository.
https://github.com/topics/unreal-engine-4. [Accessed on
08/04/2024]

[32] Amazon Web Services (AWS) Lumberyard Github
Repository. https://github.com/aws/lumberyard.
[Accessed on 21/03/2024]

[33] TheGameCreators AGK repository.
https://github.com/TheGameCreators/AGKRepo.
[Accessed on 04/08/2024]

[34] Armory3D GitHub Repository.
https://github.com/armory3d/armory. [Accessed on
21/03/2024]

[35] Babylon.js GitHub Repository.
https://github.com/BabylonJS/Babylon.js/. [Accessed on
21/03/2024]

[36] Packt Publishing Buildbox-2x-Game-Development
GitHub Repository.
https://github.com/PacktPublishing/Buildbox-2x-Game-
Development. [Accessed on 21/03/2024]

[37] Cocos Engine GitHub Repository.
https://github.com/cocos/cocos-engine. [Accessed on
21/03/2024]

[38] Cocos2d-x GitHub Repository.
https://github.com/cocos2d/cocos2d-x. [Accessed on
21/03/2024]

[39] Corona Labs Corona GitHub Repository.
https://github.com/coronalabs/corona. [Accessed on
21/03/2024]

[40] CryEngine GitHub Repository.
https://github.com/ValtoGameEngines/CryEngine.
[Accessed on 21/03/2024]

[41] Defold GitHub Repository.
https://github.com/defold/defold. [Accessed on
21/03/2024]

[42] Flame Engine GitHub Repository.
https://github.com/flame-engine/flame. [Accessed on
21/03/2024]

[43] Gambas GitHub Repository.
https://github.com/landv/gambas. [Accessed on
21/03/2024]

[44] GameMaker Studio 2 GitHub Repository.
https://github.com/topics/gamemaker-studio-2.
[Accessed on 21/03/2024]

[45] GDevelop GitHub Repository.
https://github.com/4ian/GDevelop. [Accessed on
21/03/2024]

[46] Godot Engine GitHub Repository.
https://github.com/godotengine. [Accessed on
21/03/2024]

[47] Leadwerks GitHub Repository.
https://github.com/Leadwerks. [Accessed on 21/03/2024]

[48] OGRE GitHub Repository.
https://github.com/OGRECave/ogre. [Accessed on
21/03/2024]

[49] Open3D GitHub Repository. https://github.com/isl-
org/Open3D. [Accessed on 21/03/2024]

[50] Panda3D GitHub Repository.
https://github.com/panda3d/panda3d. [Accessed on
21/03/2024]

[51] Solar2D GitHub Repository. https://github.com/solar2d.
[Accessed on 21/03/2024]

[52] Stencyl GitHub Repository.
https://github.com/Stencyl/stencyl-engine. [Accessed on
21/03/2024]

[53] Stride3D GitHub Repository.
https://github.com/stride3d/stride. [Accessed on
21/03/2024]

[54] Torque3D GitHub Repository.
https://github.com/GarageGames/Torque3D. [Accessed
on 21/03/2024]

[55] TorqueGameEngines GitHub Repository.
https://github.com/TorqueGameEngines. [Accessed on
21/03/2024]

[56] Unigine GitHub Topic. https://github.com/topics/unigine.
[Accessed on 21/03/2024]

[57] Marin-Vega, H., Alor-Hernández, G., Zatarain-Cabada,
R., Barron-Estrada, M. L., & García-Alcaraz, J. L.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2024.18.3 Volume 18, 2024

E-ISSN: 2074-1316 31

https://doi.org/10.1186/s40594-023-00424-9
https://doi.org/10.14778/3554821.3554842
https://www.packtpub.com/product/unity-virtual-reality-projects-second-edition/9781788478809
https://www.packtpub.com/product/unity-virtual-reality-projects-second-edition/9781788478809
https://doi.org/10.1109/ICSE43902.2021.00052
https://dx.doi.org/10.37394/232018.2023.11.2

(2020), A brief review of game engines for educational
and serious games development. Language Learning and

Literacy: Breakthroughs in Research and Practice, 447-
469.

 https://doi.org/10.4018/978-1-5225-9618-9.ch024
[58] Gazis, A., & Katsiri, E. (2023, August). E-polis: A

serious game for the gamification of sociological
surveys. In 2023 International Conference on Applied
Mathematics & Computer Science (ICAMCS) (pp. 154-
161). IEEE, Lefkada, Greece.

 https://doi.org/10.1109/ICAMCS59110.2023.00032
[59] Gazis, A., & Katsiri, E. (2022). Middleware 101,

Communications of the ACM, 65(9), 38-42.
https://dl.acm.org/doi/10.1145/3546958

[60] Gazis, A., & Katsiri, E. (2022). Middleware 101: What
to know now and for the future, Communications of the

ACM, 20(1), 10-23.
https://dl.acm.org/doi/10.1145/3526211

[61] Shute, V., & Ventura, M. (2013). Stealth assessment:
Measuring and supporting learning in video games (p.
102), MIT Press.
http://library.oapen.org/handle/20.500.12657/26058
[Accessed on 08/04/2024]

[62] Fernández-Sánchez, M. R., González-Fernández, A., &
Acevedo-Borrega, J. (2023). Conceptual Approach to the
Pedagogy of Serious Games, Information, 14(2), 132.
https://doi.org/10.1016/j.csi.2016.09.014

[63] Damaševičius, R., Maskeliūnas, R., & Blažauskas, T.
(2023). Serious games and gamification in healthcare: a
meta-review. Information, 14(2), 105.
https://doi.org/10.3390/info14020105

[64] Pueyo-Ros, J., Comas, J., Säumel, I., Castellar, J. A.,
Popartan, L. A., Acuña, V., & Corominas, L. (2023).
Design of a serious game for participatory planning of
nature-based solutions: The experience of the Edible City
Game. Nature-Based Solutions, 3, 100059.

 https://doi.org/10.1016/j.nbsj.2023.100059

Contribution of individual authors to the creation of a

scientific article (ghostwriting policy)

- Mr Alexandros Gazis, was responsible for the
conceptualization, investigation, methodology, software,
validation, visualization, writing the original draft, review-
editing resources, carrying out simulations, and writing the
original draft of this paper.
- Professor Eleftheria Katsiri, contributed to the
conceptualization, formal analysis, funding acquisition,
investigation, methodology, project administration, resources,
supervision, validation, visualization, review, and editing of
the original draft.

We confirm that all Authors equally contributed in the present
research, at all stages from the formulation of the problem to
the final findings and solution.

Sources of funding for research presented in a scientific

article or scientific article itself

This work was funded in part by the research project “e-polis
of the future”, supported by the Hellenic Foundation of
Research and Innovation (H.F.R.I.) in the context of the “1st
Call for H.F.R.I. (http://www.elidek.gr) Research Projects to
Support Faculty Members & Researchers and Procure High-
Value Research Equipment” (Project Number: 2617). The
authors would like to thank Mr. Gerasimos Kouzelis for
providing the research outline of this project and Mr. Orestis
Didi for his overall assistance and expertise on the topic.

Conflicts of Interest

The authors have no conflicts of interest to declare that are
relevant to the content of this article.

Creative Commons Attribution License 4.0 (Attribution

4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2024.18.3 Volume 18, 2024

E-ISSN: 2074-1316 32

https://doi.org/10.4018/978-1-5225-9618-9.ch024
https://doi.org/10.1109/ICAMCS59110.2023.00032
https://doi.org/10.1016/j.nbsj.2023.100059
https://creativecommons.org/licenses/by/4.0/deed.en_US

