
 

 

Abstract— The use of grid systems for distributing and 

managing resources such as computing power and data storage 

has become increasingly widespread in recent years. However, as 

the demand for these resources continues to grow, the capacity of 

traditional grid systems to meet this demand has become a 

concern. When dealing with the constantly expanding system 

scale and its many uncertainties, traditional model-based 

techniques are becoming unsuitable. A better alternative to these 

techniques involves considering data-driven control (DDC) 

methodologies. 

In this paper, we begin by reviewing the current state of the art 

in DDC usage in grid systems in monitoring, improving, error 

detection, etc. with a particular focus on improving host capacity. 

We then describe our proposed approach, which involves 

improving the host capacity of grid systems using historical data.  

Finally, we present experimental results demonstrating the 

effectiveness of our approach and discuss its potential impact and 

future directions. 
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I. INTRODUCTION 

he generation, transmission, and distribution components 

of power grids are constantly evolving, and this impacts the 

planning and management of the smart grid. Power grids 

are currently becoming increasingly complex as a result of 

three factors: new hardware, new data sources, and more 

stringent social and environmental standards. The evolution of 

the electrical grid is being pushed by these three forces in 

technology, markets, and public policy. 

 

The amount of additional production or consumption that may 

be connected to the grid without negatively affecting the 

dependability or voltage quality for other consumers is known 

as the hosting capacity (HC), [1], [2]. The network demand 

profile, generator dispatch profile, operating reserve, diversity 

and variation factors of PV systems, step load capabilities of 

generators, generator startup, and minimum run duration, etc. 

 

 
 

must all be taken into consideration in the HC estimation, [3].  

 
 

Figure 1. Factors pushing the advancement of Electrical Grid 

As a result, steady-state analyses serve as the basis for most HC 

evaluations that have been presented in the literature. The 

reference parameter, network conditions, topology, location, 

and PV deployment situation can all affect how HC behaves. 

As a result, HC is not a unique value and is highly dependent on 

the proper choice of the aforementioned performance measures 

and their bounds. [4], gives a methodical and thorough 

introduction to the study, creation, assessment, and 

improvement of HC. [5], provides a classification of HC 

quantification techniques and completes a thorough analysis of 

three different HC quantification techniques. In addition to 

performing a similar review, [6], also provided a summary of 

the current techniques being used in HC analysis. The factors 

pushing the advancement of Electrical Grid are presented in 

Figure 1. 

Future distribution grids will be built on DERs, which include 

wind generators, solar photovoltaic (PV) generators, energy 

storage systems, etc. This is due to the fact that implementing 

such technologies can decrease greenhouse gas emissions, 

lower energy costs, lessen reliance on fossil fuels, improve 

distribution efficiency, and satisfy rising energy demands, [7]. 

The rapid adoption of solar, wind and electric vehicles has all 

been a result of the social and environmental aims of 

eco-friendly energy and the understanding of climate change. 
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The U.S. Environmental Protection Agency (EPA) predicts 

that, after natural gas, renewable energy sources will overtake 

coal and nuclear power by 2040, [8], [9]. A number of 

variables, including voltage magnitudes, feeder power flows, 

and power quality concerns, are used to quantify operational 

performance. The modern grid is a complex system that 

requires reliable and efficient operation to meet the increasing 

electricity demand. Distributed grid systems allow their users to 

access and use shared Distributed Energy Resources (DERs) 

especially distributed photovoltaics (DPV). Such setup presents 

the associated possibility of adverse grid impact hence, the 

need for DER impact studies and of particular interest the grid 

hosting capacity, [10]. [11], states that running reserve policy, 

sustaining supply quality, legacy infrastructure, and other 

issues might be significant hurdles for distributed PV-diesel 

electricity networks. Different switching processes have a 

significant impact on the network as PV's market share rises, 

[12]. 

 

One key aspect of ensuring reliable operation is ensuring that 

the grid has sufficient host capacity, or the ability to generate 

and transmit electricity to meet demand. In recent years, there 

has been a growing interest in using data-driven (DD) 

techniques in enhancing the performance of power systems in 

general. 

The 21st century has seen a surge in the growth of data science 

becoming an important solution to the issues of scalability and 

uncertainty. Big data has made a critical component of this, 

finding applications in particle physics, [13], and process 

engineering, [14], which have witnessed a major shift from 

model-based approaches to DD techniques. 

In this paper, we will review the current state-of-the-art 

applications of DD techniques and propose a potential 

approach for further improving host capacity through the use of 

historical data.  

This research aims to examine the entire structure of real 

low-voltage grids in terms of hosting capacity for distributed 

generators (DG) using machine learning. 

In this paper, a novel method for determining a time-varying 

hosting capacity behavior through temporal instants is 

presented. Hence, necessitating the adoption of a Recurrent 

Neural Network (RNN) in the form of Long Short Term 

Memory (LSTM). This method of extended hosting capacity 

can more accurately depict the system's internal and external 

changes over time, such as the effects of harmonic distortion 

and voltage rise brought on by non-linear loads and DERs 

The remainder of the paper is structured as follows: A 

background of the current state of data-driven approaches in the 

context of energy systems is provided in section 2. The 

methodological underpinnings of our approach are described in 

Section 3: a data-oriented hosting capacity analysis approach is 

presented. The results of various tests are presented in Section 

4, with an emphasis on applicability as well as classification 

accuracy. The main findings are outlined in Section 5. 

II. LITERATURE 

Power system analysis and control have a long history of using 

machine learning and artificial intelligence. Machine learning 

was first used in power systems at the beginning of the 1990s to 

diagnose system faults, including fault detection and fault 

categorization, [15]. However, because of the computing power 

available at the time, the majority of machine-learning 

techniques were simply employed to supplement the 

knowledge of human specialists.  

The benefits of using ML for host capacity optimization are 

numerous. For example, ML algorithms can learn from 

historical data and make predictions about future electricity 

demand, allowing grid operators to anticipate and plan for 

changes in demand. ML algorithms can also identify patterns 

and trends in data that may not be immediately apparent to 

humans, enabling more accurate forecasting and planning. 

Additionally, ML algorithms can be trained to optimize grid 

operation by identifying and mitigating potential bottlenecks or 

vulnerabilities in the system. 

 

Several approaches have been proposed for using ML to 

improve host capacity in the grid. These approaches can be 

broadly categorized into two main categories: demand-side 

management and supply-side management. 

 

Demand-side management approaches aim to optimize the 

use of electricity by consumers, typically through the use of 

smart meters and other Advanced Metering Infrastructure 

(AMI), [16]. These approaches use ML algorithms to forecast 

electricity demand and optimize the operation of appliances 

and other electrical devices to reduce overall consumption. For 

example, a demand-side management system might use ML to 

predict the likelihood that a household will need to use an air 

conditioner on a hot day and adjust the operation of the air 

conditioner accordingly to reduce energy consumption, [17]. 

Numerous other methods for studying demand-side 

optimization have been examined. For instance, a 

multi-objective genetic algorithm technique has been 

developed, [18], for executing Demand Side Management 

(DSM) operations in an automated warehouse. The scheduling 

of direct demand management tactics has also been improved 

using a modified genetic algorithm, [19]. A demand-side 

energy management system based on game theory that is 

autonomous and distributed has also been presented, [20]. 

Additionally, [21], built an autonomous DR system that aims to 

be both optimal and fair with regard to the players that are 

engaged. A fuzzy logic strategy for reducing the load in 

household Heating, Ventilation, and Air Conditioning (HVAC) 

systems has also been given, [22]. It makes use of Wireless 

Sensor Networks (WSN) and smart grid incentives analyzed 

using various situations, [23]. In [24], a conceptual framework 

is presented for setting up data analytics operations and 

fostering data-driven decision-making in an electricity 

distribution network. 

 

Supply-side management approaches, on the other hand, focus 

on optimizing the generation and transmission of electricity. 

These approaches typically use ML algorithms to forecast 

electricity production and optimize the operation of power 
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plants and transmission lines to meet demand. For example, a 

supply-side management system might use ML to predict the 

output of a solar power plant based on weather data and adjust 

the operation of the plant accordingly to meet demand. The 

literature on energy exchange among Microgrids (MGs) is 

extensive. [25], presents an overview of game theoretic 

techniques for MGs. Assuming that the system model is known, 

this review investigates both cooperative energy-sharing 

models and non-cooperative game models for distributed 

control of MGs. [26], investigates energy sharing across MGs 

with the goal of lowering energy expenses. This work is later 

expanded to MGs taking into account the price-based demand 

response, [27].  

Supply-side management is the main topic of this article, 

with the objective of giving an analysis of hosting capacity in 

real-time. Current HC analysis techniques are divided into four 

groups, [28]. The worst-case HC is calculated using the 

deterministic technique, [29], [30]. 

Without taking into account the many details of an actual 

power system, the obtained HC value is understated and 

uncertain. The stochastic method employs a 

Monte-Carlo-based strategy to account for power system 

uncertainties, such as arbitrary PV unit location and load size, 

[31]. The calculation time and increased complexity of the 

power system and uncertainty factors are two disadvantages of 

this well-liked approach. 

The time series approach applies created time-series data to 

simulations and may alternatively be thought of as a 

deterministic method, [32]. While ensuring that the operational 

restrictions of the distribution network are met, the 

optimization-based approach aims to maximize the active 

power injection of DGs into the distribution network. To 

achieve the best result, this approach must go through several 

iterations.  

We used a machine learning-based strategy for HC analysis 

after considering how to solve these challenges. To distinguish 

dynamic hosting capacity (DHC) analysis from static snapshot 

hosting capacity, we first build a data-driven machine learning 

problem model that will help distribution system operators 

better determine hosting capacity, optimize control, and 

dispatch DERs in real time. 

Consequently, our work is closely connected to and may be 

viewed as a refinement of the work done by [4], [16]. They 

provide ways for distinguishing distribution grids by an 

examination of grid attributes of practical importance (e.g., 

distribution of rated transformer power). In contrast to our 

methodology, they do not categorize grids based on their DG 

hosting capability, but instead, analyze the characteristics of a 

large number of real-world grid designs. 

Overall, the method we employ ML algorithms to analyze 

low-voltage grids is novel. 

III. METHODOLOGY 

Since we aim to calculate HC in real time with high accuracy, 

the previous HCA methods cannot meet the requirements. 

Instead, we propose a machine learning-based problem 

formulation, [33]. This formulation uses historical time-series 

data to conduct offline training and obtain the HC value based 

on real-time system conditions. Specifically, we model HCA as 

a supervised learning problem that uses data of power system 

features and operating conditions as the input vectors and HC 

data as the target labels. To achieve such a learning target, the 

mapping from historical data on different input features to the 

HC is highly nonlinear, and deep learning is a promising 

method to deal with the non-linearity. To capture the periodic 

pattern of the power system, e.g., hourly, daily, and yearly 

patterns, we use the recurrent neural network (RNN) as the 

basic learning framework, [34]. In such a model, RNNs need 

some past context to predict the current output, but in practice, 

it can hardly capture the relationship in a long sequence. One of 

its variants, the long short-term memory (LSTM), has a much 

better performance of extended learning. An RNN cell's input is 

divided into two halves. The first is the output of the previous 

cell, hidden state ht-1, and the second is the input vector for this 

cell, xt. In this manner, an RNN may use its internal state 

(memory) to process input sequences. The network may be 

taught repeatedly by sending information through these 

repeating cells. Each RNN cell will produce ht as, 

 ℎ𝑡 =  ø(𝑊[(ℎ𝑡−1, 𝑥𝑡 ]) + 𝑏) 

where ø (.) is the activation function used to extract non-linear 

functions. 

 
Figure 2. Basic Cell of LSTM 

RNNs are meant to analyze sequential data, however, they have 

limitations for HCA. One problem is that RNNs cannot reliably 

transmit data between two cells that are separated by 

considerable distances. To address this issue, LSTMs enhance 

simple RNNs with gate functions capable of learning both 

short-term and long-term dependencies, [35]. This gate design 

also prevents gradient from inflating and disappearing, which is 

a significant disadvantage of RNNs, [35]. As a result, LSTMs 

have shown to be useful models for sequential prediction 

issues. 

We make use of data taken from the Mendeley Data Portal to 

prepare training and testing data for validation, [36]. The basic 

cell of LSTM is presented in Figure 2. The data is low-voltage 

grid data generated from a reference network model, i.e., 

simulations on MATLAB, and primary data processed on 

QGIS. The reference network model creates synthetic 
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low-voltage grids using data that is publicly available as well as 

national norms and standards. Furthermore, it provides 

information on household solar PV hosting capacity in 

low-voltage networks. The databases are high-resolution (1 x 1 

km) data from the UK, Sweden, and Germany and contain data 

on energy peak demand, the proportion of the population living 

in flats, and essential grid metrics like transformer capacity, 

maximum feeder length, and home solar photovoltaic hosting 

capacity estimates. Figure 3 below shows the hosting capacity 

expressed as annually produced electricity in each cell 

(kWh/household/year) in Sweden (A), Germany (B), and the 

UK (C). This shows that the highest capacity is in Sweden and 

the lowest in Canada. 

 

 
Figure 3. Hosting Capacity in Sweden, Germany, and the UK 

respectively 

Hosting capacity for all low-voltage grids in each country, as 

well as an estimate of national low-voltage hosting capacity, 

with sensitivity, runs in parentheses, for household solar PV to 

be installed. 33 (+5/-7) GW (Sweden), 248 (+5/-24) GW 

(Germany), and 63 (+1/-14) GW (United Kingdom).  

Grid component datasets are uncommon, and the dataset may 

be used to examine grid impacts from various home end-use 

technologies, as well as serve as a baseline for other reference 

network models.  

Time-series models are used to capture temporal sequence by 

LSTM. We enter the power flow data from the power flow 

analysis of the all-time series at one bus in each training step, 

and the output is the HC data vector for all the time series on 

this bus. As our input vector, we use the Load Flow analysis 

result. We use voltage magnitude, voltage angles, load profiles, 

PV profiles, and other parameters. The ht of each cell represents 

the HC value. We use the min-max normalization strategy to 

preprocess the input vector. The lowest and highest values of 

each feature in the input vector are transformed to 0 and 1, 

respectively. All other values are converted to decimal integers 

between 0 and 1. For the HC data, we instantly scale the value 

using a predetermined constant. Using this linearity scaling 

technique, we can easily extract the result to the appropriate HC 

value. A list of all the datasets and their related variable names 

is presented in Table 1. 

 
Table 1: List of all datasets and their related variable names 

Dataset Variable 

name 
Share of the population living in 
apartments 

FracAPT 

Peak residential load demand 
(kW/sqkm) 

Demand 

Maximum feeder length (km) Feeder 
Number of customers on the longest 
feeder 

CustPerFee 

Hosting capacity (kW/sqkm) Cap 
Hosting capacity (kW/household) CapPerCust 
Hosting capacity (kWh/household) EnergyHH 
Number of transformers TrNumber 
Capacity of transformers (kVA) TrCap 
Household customers per 
transformer 

CustPerTr 

IV. RESULTS 

The first set of analysis examined the impact on the calculation 

of the DHC(t) by using the measurements of the system. The 

correlation between the data measurements of generated power 

and the maximum power generation was calculated, tested, and 

plotted for all the days in the week of measurement. That is, for 

all measured values of generated power, a maximum amount of 

power generation was calculated, creating a linear dependency, 

which linear regression using the y = ax + b formulation is 

shown in Figure 4.  

 

 
 

Figure 4. Voltage variation x generated power and the linear 

dependency in relation to the maximum amount of power calculated 

by (5)—May 06, 2020.  

If a linear extrapolation is created using these points, it is 

possible to determine the hosting capacity when the calculated 

line crosses the overvoltage limit index at 5%. For example, for 

May 06, 2020, the linear regression found regarding the 

maximum amount of power calculated is equal to y = 0.0035 x 

− 0.0333, where the variable y represents the overvoltage 

margin of the system, and x represents the calculated power for 

any overvoltage margin considered. A linear correlation is 

calculated for all these instants of time using the overvoltage 

margin as well as the measured power from the PV. These 

factors will be responsible for this result. Taking a look at 

Figure 5 where an exemplification of the calculation of the 

daily DHC(t) is given. As in the local hosting capacity method, 

when these lines cross the limit index at 5%, a group of lines 
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will be drawn as a result of the hosting capacity value. These 

lines are created due to the existence of the ordered pairs: The 

measured pair (δV, Pg) and the calculated pair (δVmax, Pmax). It 

is important to notice that all ordered pairs are related by an 

instant in time. In Figure 5, as an example, we have defined two 

ordered pairs to illustrate the method. For each ordered pair, as 

mentioned before, we will extend those lines until they reach 

the limit index set as 5% of the overvoltage margin. In the 

example, the purple line created by the first ordered pair will 

reach a hosting capacity value of 5% of the maximum 

overvoltage margin of 25 kW. On the other hand, the yellow 

line created by the second ordered pair will reach 23 kW of 

hosting capacity for a certain instant in time. Based on this 

methodology, we will repeat the procedure for all ordered pairs 

created. Thus, the daily DHC(t) profile for May 6th is shown in 

Figure 5. 

 

 

 
 

Figure 5. Exemplification of calculation of dynamic daily hosting 

capacity in relation to May 06, 2020. 

In figure 5 the average score for the 6th of May, was 24 kW, as 

calculated through the daily DHC(t) profile. Remarkably, some 

values of hosting capacity are slightly higher and lower than the 

average. These phenomena might have occurred because some 

external and internal factors contributed to these differences. In 

this case, the maximum daily hosting capacity is 16.9 kW, 

whereas the minimum value is 18.3 kW. In relation to one of 

the highest values, it is possible to offer an explanation. This 

result is only significant at a moment when there is almost no 

solar production because it is early in the morning or clouds are 

covering the panels. Thus, the voltage rise will be low due to 

the lack of solar production, coupled with the fact that the 

building is empty. For example, one of the highest DHC(t) 

found was at 12 p.m., which is defined as lunchtime, and all the 

building’s equipment is turned off, while the presence of some 

clouds in the sky might have decreased the solar production as 

well. 

 

 

 
 

Figure 6. Daily EHC profile versus maximum PV generation.  

 

The daily EHC profile and the maximum PV generation can be 

drawn, which is shown in Figure 6. These results are only 

significant for the performance of the grid based on PV 

production. Interestingly, this correlation is related to the 

maximum PV production, as well as the load conditions at the 

PCC. It is important to highlight that our results could not be 

tested on loading conditions because there was no exclusive 

measurement of the load level. Thus, the single most marked 

observation to emerge from the data comparison was the larger 

the PV production is, the smaller the energy-hosting capacity 

(daily hosting capacity area) will be, which can be mitigated by 

power quality improvement processes. 

The developed model is effective at estimating system 

controller status over time. Annual over/under-voltage 

durations, on the other hand, are critical indicators in 

determining feeder hosting capacity. The annual over-voltage 

duration is projected to be 21.02 hours, which is extremely 

similar to the brute force result of 21.06 hours and the yearly 

under-voltage duration is assessed to be 18.85 hours, whereas 

the brute force result is 10.88 hours. The estimates indicate that 

the suggested model may provide a rough estimate of the 

duration of a system bus voltage violation. 

To evaluate the performance, we use two metrics from the 

models. Firstly, the Mean square error (MSE) criteria, and 

secondly, the percentage accuracy. MSE is used by the model 

to conduct back-propagation, the percentage accuracy on the 

other hand is used to give an intuitive comparison between the 

calculated HC and the simulated HC. The output of the deep 

learning models is the calculated HC, whereas the simulated 

HC is the simulation result from Mendeley Data. In the test 

scenario, the model showed values for MSE and percentage 

error as 0.08 and 8% respectively 

V. CONCLUSION AND FUTURE WORKS 

In this work the hosting capacity approach is presented as a 

planning, improving, and communication tool for electrical 

distribution systems operating under specific uncertainties, 

such as power quality issues, power stability, and reliability, 

among others. This work has helped to conclude that the local 

hosting capacity should not be analyzed only statically because 

its dynamic nature can help operators to better deal with 

intermittent distributed renewable resources. 
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Thus, a method in the form of LSTM was used to calculate the 

HC in the LV distribution grid. There are two main 

contributions. First, this method significantly simplifies the HC 

analysis and calculates HC in real-time. Second, the LSTM 

builds a correlation between temporal and spatial sequences. 

Historical power system data was used in obtaining the 

temporal sequence. 

The hosting capacity of DGs can be surpassed by grid 

reinforcement, reactive power regulation, or other smart 

technologies. It should be determined whether the proposed 

technique is appropriate to these expanded alternatives. While 

human specialists may be able to estimate the hosting capacity, 

the vast number of options and missing experiences in this 

expanded view may make it much more difficult. 
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