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Abstract—Yu and Cao proposed “Cryptography based
on delayed chaotic neural networks” in 2006. However, in
2009, Yang et al. pointed out the Yu-Cao scheme can not
against chosen plaintext attack. Liu et al. studies exclusive-
or logical operation very well, and provided Boolean
algebra proofs in 2012. Ye et al. used Liu et al.’s method
to reinterpret and analyze Yu-Cao scheme in 2018. In this
paper the authors would like to give a formal verification
by Galois field expression on the exclusive-or operation
problem again. As this result, it makes more effective
insecure to Yu-Cao algorithm.

Index Terms—Neural Network, Chaotic Cryptosystem,
Boolean Algebra, Exclusive-OR Operation

1. INTRODUCTION
Chaos theory has brought signif cant inf uences on

cryptography and computer science in the past decades.
The variety of chaos theory diffuses various types of
encryptions, secret key or symmetric key [1]. Yu and
Cao [2] proposed a novel approach of encryption em-
ployed chaotic Hopf eld neural networks with time-
varying delay. This concept describes generating binary
sequences for encrypting plaintext according to the rules.
Yang et al. [3] discovered a fundamental f aw in the Yu-
Cao scheme and gave a method to fetch the keystream
by choosing plaintext attacks in 2009. Liu et al. [4] had
a comprehensive study on the exclusive-or (XOR) topic
that they showed the singular problems in which two
variants do bitwise exclusive-or operation. Later, Ye et
al. [5] applied Liu et al.’s method to analyze the Yu-Cao
scheme in 2018. Although there are some substantial
contributions have been made in the combination of
XOR and chaotic theory [1], [6]–[8] or neural network
f elds [5], and connected applications [9]–[15], this study
focuses on how delayed chaotic neural networks can be

applied to formal verif cation. The general comparisons
of related research can be seen in Table 1. This research
is mapped as followed: Section 2 reviews the Yu-Cao
scheme. Followed by it, section 3 investigates Yang et
al.’s method. Next, the authors’ viewpoint of inferences
is introduced and discussed. The conclusion is drawn in
the f nal section.

TABLE 1
RELATED LITERATURES

year Chaotic neural-network Chaotic image Chaotic map Others
2006 Xiang et al. [16]
2006 Yu and Cao [2]
2007 Wang et al. [17]
2009 Yang et al. [3]
2009 Wang and Yu [18]
2013 Li et al. [19]
2018 Ye et al. [5]
2019 Garcia [9]
2020 Chen et al. [12]
2020 Kanaan et al. [10]
2020 Yang et al. [11]
2020 Al-Mawsawi et al. [13]
2021 Sultana et al. [14]
2021 Voloşencu [15]

2. REVIEW OF YU-CAO SCHEME

The Yu-Cao cryptosystem is governed by the follow-
ing Hopf eld neural networks [2]:

(
dx1(t)
dt

dx2(t)
dt

)

= −A

(
x1(t)
x2(t)

)

+ (1)

W

(
tanh(x1)(t)
tanh(x2)(t)

)

+

B

(
tanh(x1(t− τ(t)))
tanh(x2(t− τ(t)))

)

where τ(t) = 1 + 0.1 sin(t), the initial condition of (2)
is given by xi(t) = φi(t) when −r ≤ t ≤ 0, where
r = maxt∈R{τ(t)}, φ(t) = 0.4, 0.6)T . The set of
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delayed differential equations is solved by the fourth-
order Runge-Kutta method with time step size h = 0.01.
Suppose that x1(t) and x2(t) are the trajectories of
delayed neural networks (2). The i-th iterations of the
chaotic neural networks are x1i = x1(ih), x2i(ih). In
the Yu-Cao cryptosystem, an approach proposed in [20]
was adopted to generate a sequence of independent and
identical (i.i.d.) binary random variables from a class of
ergodic chaotic maps. For any x def ned in the interval
I = [d, e], we can express the value of (x−d)/(e−d) ∈
[0, 1] in the following binary representation:

x− d

e− d
= 0. b1(x)b2(x) · · · bi(x),

x ∈ [d, e], bi(x) ∈ {0, 1} (2)

The i-th bit bi(x) can be expressed as

bi(x) =

2i
−1∑

r=1

(−1)r−1Θ(e−d)(r/2i)+d(x) (3)

Where Θi(x) is a threshold function def ned by

Θi(x) =

{
0, x < t
1, x ≥ t

(4)

By Equation (3), a binary sequence Bk
i = {bi(xk)}

∞

k=0
is obtained, where xk is the k-th iteration of the chaotic
neural networks by Equation (2). After the basic binary
sequence is generated by Equation (2) to (4), it can be
used for encryption according to the following proce-
dures:

Step 1. Get the start point x0 from the last N0 transient
iterations, x0 = x1(N0h). In this scheme, N0 is
chosen as 1000.

Step 2. Divide the message p into subsequences Pj of
length l bytes. In this scheme l is chosen as 4.
Pj = Plj + Plj+1 + Plj+2 + Plj+3 where ‘+’
denotes concatenation.

Step 3. Iterate neural networks Equation (2) for 38
times to generate two data sequences: x1 =
x10x11 · · · x137 and x2 = x20x21 · · · x237.
Choose one of these data sequences to gener-
ate the binary sequence Aj = B1

i B
2
i · · ·B

32
i ,

Dj = B33
i B34

i · · ·B37
i , Sj = B38

i based on
Equation (3), where i = 4. The choice is
governed by the following rule: If the f rst four
bytes of the message sequence are being en-
crypted, choose x1 sequence. Otherwise choose
the data sequence according to the previous Sj .
If Sj = 0, choose the x1 sequence. Otherwise,
use the x2 sequence.

Step 4. Left cyclic shift the message block Pj for Dj

bits and right cyclic shift block Aj for Dj bits

to generate P ′

j and A′

j , respectively.
Step 5. P ′

j and A′

j to generate Cj according to the
following equation:

Cj = P ′

j ⊕A′

j . (5)

Step 6. If all plaintext blocks have already been en-
crypted, the encryption process is completed.
Otherwise, let x0 = xsj+1((38 +Dj)h), and go
to Step 2.

The decryption process is the same as the encryption one
except that the shifted message block is obtained by

P ′

j = Cj ⊕A′

j. (6)

For more details, we highly suggest a thorough reading
of [2].

3. SECURITY ANALYSIS

3.1. Yang et al.’s method

The Yu-Cao scheme is found to have a fundamental
f aw by Yang et al. [3]. As long as the key is f xed,
the keystream A′

j on the Equation (5) is independent
of the plaintext. Then every new encryption process
will be based on the same keystream. When this algo-
rithm is used to encrypt identical plaintexts at the same
encryption position, identical ciphertexts are generated.
This situation will occur frequently, especially when
encrypting f les are of the same type. This is because
those f les usually have the same header.
In Step 3 of the Yu-Cao encryption algorithm, the i is
usually set to a relatively small value, i.e., a relatively
heavy weight bit, Aj , Dj and Sj vary little in the encryp-
tion process. From Step 4 of the encryption algorithm,
we know

P ′

j1 = Pj1 ≪ Dj (7)
P ′

j2 = Pj2 ≪ Dj (8)
Cj1 ⊕ Cj2 = P ′

j1 ⊕A′

j ⊕ P ′

j2 ⊕A′

j = P ′

j1 ⊕ P ′

j2(9)
Cj1 ⊕ Cj2 = (Pj1 ⊕ Pj2) ≪ Dj (10)

A′

j = P ′

j1 ⊕ Cj1 (11)

The processes of chosen plaintext attack to the cryp-
tosystem are listed step by step as follows:
Step B1. We get P41 = 8907A023h, P42 =

36DC01B2h, P ′

41 = D011C480h, P ′

42 =
00D91B6Eh, C41 = FFEFDB7Fh and
C42 = FF270491h.

Step B2. Assume we only know P41, P42, C41 and C42,
and compute Dj , A′

j and Aj as follow:
1) denote X4 = C41⊕C42 = D0C8DFEEh,

and Z4 = P41 ⊕ P42 = BFDDA191h.
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2) By left cyclic shifting Z4 until Z4 = X4,
we can obtain the number of shifts D4 =
Fh.

3) According to Step 4 of Yu-Cao algorithm,
we can obtain P ′

41 = D011C480h and
P ′

42 = 00D91B6Eh.
4) According from A′

j = P ′

j1 ⊕ Cj1, we can
obtain A′

4 = FFFE1FFFh.
5) According to Step 4 of Yu-Cao algorithm,

we get A4 = 0FFFFFFFh.
From the above demonstration, we can easily obtain
the keystream using only two pairs of plaintext and
ciphertext.

3.2. Our methodology

In this subsection, we will point out a leak for Yang et
al.’s method and our attack. Even if Yang et al. scheme
used two pairs of plaintext and ciphertexts to obtain
the keystream of Yu-Cao cryptosystem and attack it.
Yang et al. used bitwise exclusive-or (XOR) operation
to compute X4, Z4 and we can denote X4 = C41⊕C42,
Z4 = P41⊕P42. In fact, the XOR operation is a common
component in the design of digital logical. It is used on
adder, cryptosystem or other applications. We derived
the Lemma 1 to Lemma 4 [4]:
1. The Boolean Algebra Expression
Table 2 describes the XOR truth table. The XOR oper-
ation can be expressed as

A⊕B = (¬A ∧B) ∨ (A ∧ ¬B), (12)

or express to

B ⊕A = BA+BA. (13)

It is a very common component in digital circuit or
logic, and often used to many f elds such as adder,
cryptosystem, image process and so on.

TABLE 2
THE XOR TRUTH TABLE

A B A⊕B

0 0 0
0 1 1
1 0 1
1 1 0

Lemma 1. Let ⊕ be an operation on the setX. It is
called commutative ifA⊕B=B ⊕A for all A,B ∈ X.

Proof. To prove A ⊕ B = AB + AB where B ⊕ A =
BA+BA, therefore AB +AB = BA+BA.

We obtain A⊕B=B ⊕A.
Thus, the XOR matches commutative law.

Lemma 2. Let ⊕ be an operation in the setX. It is
called associative if(A ⊕ B) ⊕ C = A ⊕ (B ⊕ C) for
all A,B ∈ X.

Proof. = (A⊕B)⊕ C = (AB +AB)⊕ C .
= (AB +AB)⊕C .
= (AB +AB)C + (AB +AB)C .
= (AB +AB)C + (AB +AB)C .
= (AB) · (AB)C +ABC +AB · C
= (A+B)(A+B)C +ABC +AB · C
= AAC +ABC +B ·AC +BBC +ABC +AB · C
AA = 0 and BB = 0
= ABC +B · AC +ABC +AB · C
Computing A⊕ (B ⊕C)
= A⊕ (B ⊕ C) = A⊕ (BC +BC)
= A(BC +BC) +A(BC +BC)

= ABC +ABC +A(BC) · (BC)
= A · BC +ABC +A(B +C)(B + C)
= A · BC +ABC +ABB +AB · C +ACB +ACC
= A · BC +ABC +ABC +AC · B.
Since ABC + B · AC + ABC + AB · C = A · BC +
ABC +ABC +AC ·B.
Thus, (A⊕B)⊕ C = A⊕ (B ⊕ C).
Here, the XOR matches associative law.

Lemma 3. Let A = B, A⊕B =

bits
︷ ︸︸ ︷

0000 . . . 0000.

Proof. As known from Table 2, we get A ⊕ A = 0,

therefore A⊕B =

bits
︷ ︸︸ ︷

0000 . . . 0000.

Lemma 4. If A and B are both odd num-

bers, where (A) ⊕ (−A) =

bits
︷ ︸︸ ︷

1111 . . . 1110, (B) ⊕

(−B) =

bits
︷ ︸︸ ︷

1111 . . . 1110, then (A⊕B) = (−A⊕−B).

Proof. According to Lemma 3, if A = B, then (A⊕B)⊕

(−A⊕−B) =

bits
︷ ︸︸ ︷

0000 . . . 0000. From Lemma 1 commuta-
tive law and Lemma 2 associative law, we rewrite this
equation (A⊕B)⊕(−A⊕−B) = (A⊕−A)⊕(B⊕−B).
According to Lemma 4, A⊕−A = B ⊕−B.

From Lemma 3, (A⊕B)⊕ (−A⊕−B) =

bits
︷ ︸︸ ︷

0000 . . . 0000.
Therefore, (A⊕B) = (−A⊕−B).

2. The Galois Field Expression
From above, the proof of Lemma 1 to Lemma 4 is
described by Boolean algebra. In this paragraph, the
authors borrowed binary concept which it re-express
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to Galios f eld form, and one theorem integrated four
lemmas.

Theorem 1. If 2m‖A, 2m‖B, then (A ⊕ B) ≡ (−A ⊕
−B) mod 2n , since m < n ∈ N , A ∈ N andB ∈ N .

Proof. As know 2m‖A, 2m‖B, we get A = ai

n−1∑

i=m+1

2i+

2m, B = bi

n−1∑

i=m+1

2i + 2m where ai ∈ GF (2), bi ∈

GF (2). Suppose −A ≡ (22 −A) mod 2n, namely

−A ≡ (2n −A) mod 2n

≡ (

n−1∑

i=0

2i + 1−A) mod 2n

≡ (

n−1∑

i=0

2i − ai

n−1∑

i=m+1

2i − 2m + 1) mod 2n

≡ (āi

n−1∑

i=m+1

2i +

m∑

i=0

2i − 2m + 1) mod 2n

≡ (āi

n−1∑

i=m+1

2i + 2m) mod 2n. (14)

Similarly, −B ≡ (b̄i
n−1∑

i=m+1
2i+2m) mod 2n. We express

(A⊕B) ≡

(

(ai ⊕ bi)
n−1∑

i=m+1
2i
)

mod 2n, and rewrite as

(−A⊕−B)

≡

(

(āi

n−1∑

i=m+1

2i + 2m)⊕ (b̄i

n−1∑

i=m+1

2i + 2m)

)

mod 2n

≡

(

(āi

n−1∑

i=m+1

2i)⊕ (b̄i

n−1∑

i=m+1

2i) + (2m ⊕ 2m)

)

mod 2n

≡

(

(āi ⊕ b̄i)

n−1∑

i=m+1

2i

)

mod 2n

≡

(

(ai ⊕ bi)

n−1∑

i=m+1

2i

)

mod 2n

≡ (A⊕B) mod 2n. (15)

We can easily compute −C41, −C42 if C41, C42 are
known. By Theorem 1 or Lemma 1 to 4, we can compute
X4 with −C41 ⊕−C42 instead of C41 ⊕C42 because of
C41, C42 are odd numbers in the Yang et al. scheme.
We can also easily obtain the keystream using only

two pairs of plaintext and ciphertext. The verif cation
of computation are listed as follows:

C41 = 2FEFDB7Fh.

C42 = FF270491h.

C41 ⊕ C42 = D0C8DFEEh.

−C41 = FFFFFFFFD0102481h.

−C42 = FFFFFFFF00D8FB6Fh.

−C41 ⊕−C42 = D0C8DFEEh. (16)

4. CONCLUSION

The formal verif cation is one way to use mathematical
methods to prove that scheme is correct or incorrect. A
formal proof can ensure whether the result of logical
inference is consistent with the previous stage, and can
not guarantee whether there are defects in the process
of logical inference. In this article the authors take as
an example of XOR problem in Yu-Cao scheme, and
then using two ways formal proofs; one is Boolean
algebra and other is Galois f eld. Although the formal
verif cation does not guarantee one hundred percent
whether there are errors in logical inferences (such as
tautology). However, at least in the process phase or the
result phase of inference, it plays an important decisive
role. It is very diff cult to f nd or check the problem from
mathematics or informatics f elds. The authors fully use
2-adic number of Galois f eld to present this situation on
Yu-Cao’s scheme.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for
their comments that help improve the manuscript. This
work is partially supported by the project number
X2021110650493 from College Students Innovation and
Entrepreneurship Training Program of China by Qingdao
University.

REFERENCES

[1] X. Wang and J. Zhao, “An improved key agreement protocol
based on chaos,” Communications in Nonlinear Science and
Numerical Simulation, vol. 15, no. 12, pp. 4052–4057, 2010.

[2] W. Yu and J. Cao, “Cryptography based on delayed chaotic
neural networks,” Physics Letters A, vol. 356, no. 4, pp. 333–
338, 2006.

[3] J. Yang, X. Liao, W. Yu, K. wo Wong, and J. Wei, “Crypt-
analysis of a cryptographic scheme based on delayed chaotic
neural networks,” Chaos, Solitons and Fractals, vol. 40, no. 2,
pp. 821–825, 2009.

[4] C. Liu, S. Chen, and S. Sun, “Security of analysis mutual
authentication and key exchange for low power wireless com-
munications,” Energy Procedia, vol. 17, pp. 644–649, 2012.

[5] X. Ye, X. Ye, and R. Wu, “Security analysis of Yu-Cao neural
networks scheme,” in AIP Conference Proceedings, vol. 2040,
2018, pp. 1 300 061–1 300 065.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2022.16.111 Volume 16, 2022

E-ISSN: 1998-4464 902



5

[6] A. Rogers, J. G. Keating, R. Shorten, and D. M. Heffernan,
“Chaotic maps and pattern recognition-the XOR problem,”
Chaos, Solitons and Fractals, vol. 14, pp. 57–70, 2002.

[7] S. Xu, Y. Wang, J. Wang, and M. Tian, “Cryptanalysis of
two chaotic image encryption schemes based on permutation
and XOR operations,” in 2008 International Conference on
Computational Intelligence and Security, vol. 2, 2008, pp. 433–
437.

[8] X. Wang, N. G. H. Zhao, S. Wang, and Y. Zhang, “A new image
encryption scheme based on coupling map lattices with mixed
multi-chaos,” Scientific Reports, vol. 10, no. 1, pp. 1–15, 2020.

[9] M. I. Garcia-Planas, “Analyzing controllability of neural net-
works,” WSEAS Transactions on Circuits and Systems, vol. 18,
pp. 1–6, 2019.

[10] L. Kanaan, J. Haydar, M. Samaha, A. Mokdad, and W. Fahs,
“Intelligent bus application for smart city based on LoRa
technology and RBF neural network,” WSEAS Transactions on
Systems and Control, vol. 15, pp. 725–732, 2020.

[11] W. Yang, Y. Chai, J. Zheng, and J. Liu, “Intelligent diagnosis
technology of wind turbine drive system based on neural net-
work,” WSEAS Transactions on Circuits and Systems, vol. 19,
pp. 289–296, 2020.

[12] S. C.-I. Chen, C. Liu, Z. Wang, R. McAdam, M. Brennan,
S. Davey, and T. Y. Cheng, “How geographical isolation and
aging in place can be accommodated through connected health
stakeholder management: Qualitative study with focus groups,”
Journal of Medical Internet Research, vol. 22, no. 5, p. e15976,
May 2020.

[13] S. A. Al-Mawsawi, A. Haider, and Q. Alfaris, “Neural network
model predictive control (NNMPC) design for UPFC,” WSEAS
Transactions on Computers, vol. 19, pp. 201–207, 2020.

[14] Z. Sultana, A. R. Khan, and N. Jahan, “Early breast cancer de-
tection utilizing artif cial neural network,” WSEAS Transactions
on Biology and Biomedicine, vol. 18, pp. 32–42, 2021.
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