
 

 

 
Abstract—For bearings-only tracking (BOT), there are 

mainly two problems of nonlinear filtering and poor range 

observability. In the paper, a new distributed multisensor 

pseudolinear Kalman filter (PLKF) algorithm is proposed. 

The sensors use an instrumental vector PLKF (IV-PLKF) 

to process the measurements of the target independently, 

which can tackle the bias arising from the correlation 

between the measurement vector and pseudolinear noise by 

the bias compensation PLKF (BC-PLKF). The IV-PLKF 

embeds the recursive instrumental vector estimation 

method into the BC-PLKF, uses it to construct the 

instrumental vector, and applies the method of selective 

angle measurement to modify the local target state 

estimation and covariance. In the fusion center, the target 

state can be estimated by using the multisensor optimal 

information fusion criterion. Then the Cramer-Rao lower 

bound (CRLB) of multisensor BOT is derived. Simulation 

results show the effectiveness of the algorithm. 

 

Keywords—pseudolinear Kalman filter, distributed 

multisensor, bearings-only tracking, instrumental vector, 

optimal information fusion. 

I. INTRODUCTION 
or many years, target tracking has been a hot research field, 
which is widely used in navigation, radar, sonar and wireless 

sensor networks. The goal of bearings-only tracking (BOT) is 
to estimate the target trajectory from the noisy target bearing 
data collected by a single motion sensor or multiple spatially 
distributed sensor nodes [1-3]. 

The challenge of BOT problem mainly comes from the 
nonlinearity of measurement equation and the lack of target 
radial distance observability. A straightforward application of 
the popular extended Kalman filter (EKF) to the BOT problem 
may produce unstable results. In order to improve the 
performance, some improved algorithms are proposed, such as 
MIEKF, MP-EKF and UKF [4-6]. Particle filter (PF) is an 
optimal nonlinear filter based on Monte Carlo integration. It is 

 
 

also applied to bearings-only target tracking [7]. One of the 
main disadvantages of PF is its high computational complexity, 
which limits its application in real-time target tracking [8]. For 
BOT, linearized recursive Bayesian estimation can be obtained 
by using pseudolinear equations instead of nonlinear bearing 
measurements. This method is usually called pseudolinear 
Kalman filter (PLKF) [9]. Compared with PF and other 
nonlinear Kalman filter algorithms (such as UKF), PLKF 
algorithm not only provides comparable tracking performance, 
but also requires lower computational complexity. In addition, 
PLKF has better robustness than EKF for the influence of 
initialization error, and has the same complexity as EKF. 
However, PLKF has a serious bias problem, and the tracking 
performance is inevitably affected by the relationship between 
relative geometry and motion [10]. In [11], the asymptotic bias 
of pseudolinear estimation of bearings only target motion is 
analyzed, and a bias compensation method based on 
instantaneous bias estimation is proposed. Of course, in order to 
increase accuracy, these pseudolinear estimation methods can 
be extended to a variety of mixed measurement information 
[12,13]. In [14], the noise is directly separated from the 
measurement vector and an unbiased PLKF algorithm is 
presented, which extends the PLKF to the maneuvering target 
tracking scene. In [15], the correlation between pseudo 
measurement matrix and pseudolinear noise is analyzed in 
detail, and a pseudolinear filter without bias compensation in 
the framework of minimum mean square error (MMSE) is 
proposed. These methods only consider the case of a single 
sensor. 

Since a static sensor cannot track the target only by bearing 
measurement, in order to achieve full observability of the target 
state, the sensor needs to exert a specific maneuver, which is 
not desirable in some scene applications [16]. With multiple 
sensors, this issue does not exist, but the measurement data 
needs to be fused to obtain accurate estimation of target 
trajectory [17]. Generally, there are two different fusion 
structures. One is centralized fusion, in which all measurement 
data are sent to the central site for processing directly. The 
advantage is that the loss of information is minimal. The 
disadvantage is that the amount of data processed is too large, 
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resulting in serious computing load. The other is distributed 
fusion, where the local sensors yield global optimal or 
suboptimal state estimation by using specific information 
fusion rules. The advantage is that it is amenable for fully 
parallel implementation, which can improve the rate of input 
data and make fault detection and isolation easy [18]. In [19,20], 
the authors gives the optimal information fusion rule weighted 
by matrix in the sense of linear minimum variance (LMV), 
which is equivalent to the maximum likelihood (ML) fusion 
rule under the assumption of normal distribution. In [21], a 
general distributed optimal linear fusion estimation algorithm 
with matrix gain Kalman structure is proposed under the linear 
unbiased minimum variance criterion. In order to reduce the 
amount of computation, two suboptimal linear fusion 
estimation algorithms with diagonal matrix gain and scalar gain 
are proposed. 

This paper combines the improved PLKF with the optimal 
fusion method, and proposes a distributed multisensor 
pseudolinear Kalman filter BOT algorithm. Each sensor 
subsystem processes the measurement value of the target 
independently, uses the instrumental vector PLKF for filtering 
estimation, sends the local target state estimation to the fusion 
center, in which the multisensor optimal information fusion 
criterion is used and the fusion estimation of the target state can 
be obtained. In addition, the calculation method of Cramer-Rao 
lower bound (CRLB) of multisensor BOT is presented. Finally, 
the effectiveness of the algorithm is verified by simulation 
experiments. 

This paper is organized as follows. In Section II, the 
formulation of the multisensor BOT problem is presented and 
the PLKF is reviewed briefly. In Section III, the proposed 
distributed multisensor pseudolinear Kalman filter BOT 
algorithm is described in detail and the CRLB for the BOT 
problem is derived. In Section IV, the simulation results and 
performance analysis of the proposed BOT algorithm are given. 
And finally, some conclusions are summarized in Section V. 

II. PROBLEM FORMULATION 

A. Multisensor BOT problem 

Consider the following multisensor BOT system: 

1k k k  x Fx w          (1) 

 k k kh θ x v          (2) 

where  
T, , ,k k k k kx x y yx  is the target state vector at time 

k ,  
T

  denotes the transpose of   , F  is the state transition 

matrix,  diag ,   F F F , 
1
0 1

sT 
  
 

F , 

 diag  denotes diagonal matrix, sT  is the sampling period, 

kw  is a zero-mean white Gaussian noise with covariance 

matrix Q ,  diag ,     Q Q Q , 

3 2

2

3 2
2

s s

s s

T T

T T

 
  
 

Q ,   is the power spectral density of 

process noise. 
T

1, ,, ,
ok k N k    θ L , oN  is the number of 

sensors, ,n k  is the target bearing generated by sensor n  at 

time k . , , ,n k n k n kv   , 
 

 , arctan
n

y

n k n

x

y k r

x k r


 
    

, 

 1, , on N L ,  ,n n

x yr r  is the location of sensor n . The 

measurement noise ,n kv  is a zero-mean white Gaussian 

process with covariance matrix 2
n . 

T

1, ,, ,
ok k N kv v   v L , 

and it is uncorrelated with process noise kw .  

The target bearing kθ  is a nonlinear function of the state 

vector kx , thereby making (1) and (2) a nonlinear state space 

model. Target tracking is to estimate the target state kx  from a 

history of bearing measurements up to time k . 

B. PLKF 

In order to apply Kalman filter to the state space model in 
BOT, the measurement equation (2) must be linearized. The 
EKF can achieve this by truncating Taylor series expansion. 
However, this can lead to some instability problems. A more 
attractive method is the pseudolinear estimation. 

For a sensor, the bearing measurement equation can be 
written as 

 
 

sin

cos
k k k

kk k

v y

xv










V

V
        (3) 

where n

k k yy y r V , n

k k xx x r V .  

After several algebraic operations, the following 
pseudolinear equation is obtained. 

T T
k k k k u r u Mx         (4) 

where 
sin
cos

k

k

k





 
  

 
u , 

1 0 0 0
0 1 0 0
 

  
 

M , 

T
,n n

x yr r   r , sink k kv   d , kd  is the Euclidean 

distance from the sensor to the target. Letting T
k kz  u r , 

T
k kH u M , then the pseudolinear measurement equation can 

be rewritten as 

k k k kz  H x          (5) 

The variance of pseudolinear measurement noise k  is kR , 
which can be obtained by definition. 

 
22 2Ek k k kR    d         (6) 
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    2 2 21=E sin 1 exp 22k k nv         (7) 

For suffificiently small bearing measurement noise, 2 2
k n  , 

kR  is given as 
2 2

k k nR  d . 

Equations (1) and (5) form a pseudolinear state target 
tracking model, and the target state is estimated by PLKF. 
 State prediction: 

1 1 1ˆ ˆ
k k k k  

x Fx           (8) 

 Calculation of the covariance of the predicted state: 
T

1 1 1k k k k  
 P FP F Q        (9) 

 Calculation of pseudolinear measurement noise variance: 
2

2
1

ˆ
k kk k

R 


 d         (10) 

where 1 1
ˆ ˆ

k k k k 
 d Mx r . 

 Calculate Kalman gain as: 

 
1

T T
1 1k k k k kk k k k

R


 
 K P H H P H     (11) 

 State update: 

 1 1ˆ ˆ ˆ+ k k kk k k k k k
z

 
 x x K H x      (12) 

 State covariance update: 

  1k kk k k k
 P I K H P        (13) 

Different from the traditional linear state space model, in the 
pseudolinear measurement equation (5), the measurement 
vector kH  is correlated with the pseudo measurement noise 

k , and kH  is also a function of the state vector kx . This will 
lead to a bias problem in the PLKF, which will become 
significant when the process noise is large. 

III. THE PROPOSED DISTRIBUTED MULTISENSOR 
PSEUDOLINEAR KALMAN FILTER ALGORITHM 

Firstly, the bias compensation PLKF is briefly described, and 
then the instrumental vector PLKF is introduced. For each 
distributed sensor subsystem, the IVPLKF is used to estimate 
the target state independently. The estimated target state and its 
covariance are sent to the fusion center. The fusion estimation 
of the target state is obtained by using the optimal information 
fusion criterion. Finally, the CRLB of multisensor BOT is 
deduced theoretically. 

A. Bias compensation PLKF 

The bias in PLKF is expressed as 

       ˆE E +E +Ek k k k kk k
  δ x x A B C    (14) 

   
1

1 T 1 1
11 1 1 1ˆ+k k k k kk k k k k k

R


  

   
 A P H H P F x x   (15) 

 
1

1 T 1 1
11 1+k k k k kk k k k

R


  

 
 B P H H P Fw     (16) 

 
1

1 T 1 T 1
1+k k k k k k kk k

R R 


  


C P H H H      (17) 

For the bias term in equation (14), the first term  E kA  only 

propagates the bias at the previous time, so it is not the cause of 
the bias. In the second term, kH  is correlated with the process 

noise kw  because kH  is a function of kx . If the target 
moves at nearly constant velocity, the process noise is quite 
small, and the correlation between kH  and kw  will be weak. 

Therefore,  
1

1 T 1 1
1 1+ k k kk k k k

R


  

 
P H H P  is weakly correlated 

with kw . Then it can obtained as  E 0k B . For the third 

term,  E 0k C , because kH  and k  are related by 

measurement noise 
kv . Therefore, for the nearly constant 

velocity target motion model, the root cause of state estimation 
bias in PLKF is the correlation between kH  and k . By 

compensating the bias caused by kC , the PLKF bias can be 
alleviated. 

kC  can be calculated approximately: 

   

   

1
1 T 1 1 T

1

1
1 T 1 1 2 T

1

ˆ + E

ˆ+

k k k k k k k kk k

k k k k kk k k k

R R

R R






  




  





  

C P H H H x

P H H M Mx r

  (18) 

The BC-PLKF method, that is, the instantaneous bias 
estimation of kC  is subtracted from ˆ

k k
x  estimated by PLKF 

to obtain the state estimation Bˆ
k k

x . 

   

 

B

1
1 T 1 1 2 T

1

1 2 T

ˆˆ ˆ

ˆ ˆ+

ˆ ˆ=

kk k k k

k k k k kk k k k k k

k kk k k k k k

R R

R






  





 

  

 

x x C

x P H H M Mx r

x P M Mx r

 (19) 

B. Instrumental vector PLKF 

Unlike the bias compensation PLKF, the instrumental vector 
PLKF aims to remove the bias due to kC  by eliminating the 

correlation between kH  and k , rather than directly 

subtracting kC  from the state estimation ˆ
k k

x . 

The instrumental vector kG  is constructed with 

 TE =0k kG . The bias term caused by kC  in equation (14) 

can be approximately calculated for a sufficiently large k . 

      
1

1 T 1 1 T
1E E + E 0k k k k k k kk k

R R 


  


 C P G H G  (20) 

Thus, the approximate unbiased estimation of state 
estimation ˆ

k k
x  is obtained. The optimal choice of instrumental 

vector kG  can be given by the noiseless form of measurement 
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vector 
kH . Since the true target bearing 

k  is unknown, the 

suboptimal instrumental vector 
kG  can be given by replacing 

k  with the estimated value B
k̂ k

  computed from bias 

compensation PLKF. 
B Bˆ ˆsin , cosk k k k k

   
 

G M     (21) 

 

 

B
B

B

ˆ 3ˆ arctan
ˆ 1

n

yk k

k k n

xk k

r

r


 
 
 
 

x

x
     (22) 

The instrumental vector kG  is required to have a strong 

correlation with the measurement vector kH . In the presence 
of large measurement noise and in unfavorable geometric 
measurement position, due to the large bias between the 

measured bearing k
%  and the estimated bearing B

k̂ k
 , the 

correlation between kG  and kH  may be weakened, resulting 
in the poor performance of the target estimation. In order to 
maintain the strong correlation between kG  and kH , the 
selective angle measurement (SAM) strategy is combined into 
the instrumental vector PLKF algorithm. 

If Bˆ
k kk k

   %  ( k n  , where   is a scalar factor), 

the instrumental vector is used to correct the target state 
estimation and covariance. 

a. Calculate instrumental vector: 
B Bˆ ˆsin , cosk k k k k

   
 

G M     (23) 

b. Gain correction: 

 
1

IV T T
1 1k k k k kk k k k

R


 
 K P G H P G   (24) 

c. State correction: 

 IV IV
1 1ˆ ˆ ˆ+ k k kk k k k k k

z
 

 x x K H x     (25) 

d. Covariance correction: 

 IV IV
1k kk k k k

 P I K H P       (26) 

C. Proposed distributed multisensor IVPLKF algorithm 

In the distributed multisensor system, each sensor subsystem 
independently estimates the target state, sends the target state 
estimation and its covariance to the fusion center, where the 
optimal information fusion criterion is used to obtain the fusion 
estimation of the target state. 

Assuming that the state estimation at time k  obtained by 

multisensor is 1ˆ ˆ, , oN

k k
 
 x xL , the optimal fusion estimation of 

target state ˆ
kx  is given as: 

1 1 2 2ˆ ˆ ˆ ˆo oN N

k k k k   x A x A x A xL   (27) 

In equation (35), n
A  is weight matrix, 1, , on N L . 

 
11 T 1 

 A Σ e e Σ e        (28) 

where  1diag , , oN

k k
   Σ P PL  is a 4 4o oN N  diagonal 

matrix, 
T1, , oN

A A   A L ,  
T

4 4, ,e I IL  is a 

4 4oN   matrix, 4I  is a 4 4  identity matrix. The 
covariance of the target state estimation is calculated as: 

 
1T 1

k


P e Σ e        (29) 

Starting from the posterior target state estimation 
corresponding to sensor n  at scan k , represented by 1 1ˆ n

k k 
x  

and 1 1
n

k k 
P , a cycle of the proposed distributed multisensor 

IVPLKF (DM-IVPLKF) algorithm is summarized in 
Algorithm 1. 

 

Algorithm 1: The proposed DM-IVPLKF algorithm 
1: Input: 1 1ˆ n

k k 
x  and 1 1

n

k k 
P , 1, , on N L . 

2: Predict state 1ˆ n

k k
x  according to (8). 

3: Calculate the covariance of the predicted state 1
n

k k
P  

according to (9). 
4: Calculate the pseudolinear measurement noise variance 
n

kR  according to (10). 

5: Calculate gain n

kK  according to (11). 

6: Update state ˆ n

k k
x  according to (12). 

7: Calculate the covariance of the update state n

k k
P     

according to (13). 
8: Calculate bias compensation estimation B,ˆ n

k k
x  according to 

(19). 

9: Estimate target bearing B,ˆ n

k k
  according to (22). 

10: Apply SAM strategy: If Bˆ
k kk k

   % , correct state 

IV,ˆ n

k k
x  and covariance IV,n

k k
P  according to (25) and (26) 

respectively. Set IV,ˆ ˆn n

k k k k
x x  and IV,n n

k k k k
P P . Otherwise,  Set 

B,ˆ ˆn n

k k k k
x x . 

11: Calculate fusion state ˆ
kx  and covariance kP  according 

to (27) and (29) respectively. 
12: Output: ˆ

kx , kP . 

D. The CRLB for multisensor BOT 

As far as performance analysis is concerned, the CRLB is 
widely used to assess the performance of filters [9]. In the 
section, a theoretical CRLB for the multisensor BOT problem 
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is derived. For the filtering problem described in equations (1) 
and (2), a recursive formula is proposed for the Fisher 
information matrix inverse noted by 1

k


J , which gives the 

CRLB as: 

 
122 21 11 12

1k k k k k k



   J D D J D D    (30) 

where 11
kD , 12

kD , 21
kD  and 22

kD  are respectively defined as 
follows: 

  
T11

1E log |
k kk k kp 
     x xD x x   (31) 

  1

T21
1E log |

k kk k kp
 

     x xD x x   (32) 

  1

T T12 21
1E log |

k kk k k kp
 
          x xD x x D  

(33) 

  
  

1 1

1 1

T22
1

T

1 1

E log |

E log |

k k

k k

k k k

k k

p

p

 

 



 

     

    

x x

x x

D x x

z x

  (34) 

where   denotes the gradient operator. 

For the state equation (1), the calculation of 11
kD  and 12

kD  
can be simplified as follows: 

   11 T
1 1

T 1

E{ log | [ log | ] }
k kk k k k kp p 



  



x x
D x x x x

F Q F
 

 (35) 

   
1

12 T
1 1

T 1

E{ log | [ log | ] }
k kk k k k kp p

 



  

 

x x
D x x x x

F Q

 (36) 
Assuming that each sensor independently observes the target 

and the measured bearing is synchronous, 22
kD  in equation (34) 

can be calculated by the following equation: 

   

   

  

1 1

1 1

22 T
1 1

T
1 1 1 1

T1 1
1 1

E{ log | [ log | ] }

E{ log | [ log | ] }

E

k k

k k

k k k k k

k k k k

k k

p p

p p

 

 

 

   

 

 

  

  

 

x x

x x

D x x x x

z x z x

Q H R H

 (37) 
where  

 
1

T

1 1=
kk kh
 

  x
H x         (38) 

 2 2
1diag , ,

oN    R L        (39) 

In equation (38), 1kH  can be obtained by calculating the 
gradient. 
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The substitutions of equations (35), (36) and (37) into the 
recursion equation (30) yields: 

  

   

T1 1
1 1 1

T 11 T 1 T 1

Ek k k

k

 

  


  

 

 

J Q H R H

Q F J F Q F F Q

  (44) 

where the expectation operator E  can be approximately 
calculated by Monte Carlo method. 

IV. SIMULATION RESULTS 
This section presents a performance evaluation of the 

proposed distributed multisensor IVPLKF (DM-IVPLKF) 
algorithm in comparison to the DM-IPLKF, DM-PLKF, 
DM-EKF, DM-IEKF and DM-UKF algorithms using 
Monte-Carlo (MC) simulations. And the CRLB will be used to 
indicate the best possible performance that one can expect for a 
given scenario. Consider the distributed multisensor BOT 
model described in equations (1) and (2). The numerical values 
of the parameters of the dynamic system are given as follows. 

 
T

0 0km,0.15km / s,23km,0.1km / sx  is initial target 
state.  

Number of sensors 3
o

N  . The sensors are located at 

 20, 20 km ,  30, 20 km  and  25, 28.66 km .  

Sampling period 1ssT  . 
The power spectral density of process noise 

2
3

m0.5 s  . 

1 2 3 1mrad


       is measurement noise 

standard deviation. 
In order to assess the performance of the tracking algorithms, 

three different metrics are used. The first is the root-mean 
square error (RMSE), defined as 
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1 ˆRMSE
MN

l l

k k k

M l
N



  x x     (45) 

where l

kx  and ˆ l

kx  denote the true and estimated target state 

value at time k  at the l -th MC run, 
MN  is the total number of 

independent MC runs. 
The second metric is the root time averaged mean square 

(RTAMS) error, defined as 
max

2

max 1 1

1 ˆRTAMS
Mt N

l l

k k

M k l
t N

 

  x x  (46) 

where maxt  is the total number of time epochs. RTAMS can be 
used to evaluate the overall performance. 

The third metric is the efficiency parameter   defined as 

 CRLB RTAMS
100%

RTAMS
      (47) 

From the above equation, it can be observed that   indicates 
“closeness” to the CRLB. 

Each group of simulations are carried out on the same target 
tracks, regardless of the initial convergence period, that is, the 
target tracking period is set as 40 100k  . The number of 
simulations is set to =2000MN . All simulations are 
implemented on the same processor (Intel(R) Core(TM) 
i7-7500U CPU 2.70GHz) using MATLAB. 

A. Overall performance 

This group of simulations aims to compare overall 
performance of the algorithms. Fig. 1 and Fig. 2 respectively 
show the RMSE and CRLB of the position and velocity 
estimation for each algorithm at each time. Table 1 shows the 
comparison of RTAMS and   of the position and velocity 
estimation for the algorithms. Table 2 shows the comparison of 
the averaged runtime of the algorithms at each time. 

From Fig. 1, Fig. 2 and Table 1, it can be observed that the 
DM-IEKF has better precision than the DM-EKF, due to the 
modification. The target tracking error of the DM-UKF is 
smaller than that of the DM-IEKF because DM-UKF 
approximates the statistics of state variables by selecting a 
series of symmetrical deterministic sampling points. The 
DM-PLKF shows a very poor RMSE performance at both the 
position and velocity estimation as a consequence of its severe 
bias performance. The DM-IPLKF significantly outperforms 
the DM-PLKF in terms of the RMSE performance, since 
DM-IPLKF compensates the pseudolinear bias. Specifically, 
the DM-IVPLKF exhibits the best RMSE performance, due to 
that DM-IVPLKF uses instrumental vector to further weaken 
the influence of pseudolinear bias. The efficiency parameter of 
DM-IVPLKF is the largest, and the target state estimation of 
DM-IVPLKF is the closest to CRLB. 

As can be seen from Table 2, the DM-IEKF is 11% slower 
DM-EKF, due to the extra computation for the iterative step. 
The DM-UKF has the largest computational complexity, and 

takes about three times as long as DM-EKF, since it needs to 
select sampling points. The runtime of DM-PLKF is 7% less 
than that of DM-EKF. The DM-IPLKF takes 13% more time 
than DM-PLKF, due to the extra computation for the bias 
compensation step. Specifically, the DM-IVPLKF is 19% 
slower than the DM-IPLKF, because it needs to complete the 
relevant calculation of instrumental vector. 
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Figure 1. The RMSE of the position estimation versus time. 
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Figure 2. The RMSE of the velocity estimation versus time. 

 

Table 1. Performance Comparison 

Algorithm/ 
CRLB 

Position estimation Velocity estimation 
RTAMS(m

) 
  RTAMS(m/s

) 
  

DM-EKF 113.4447 79.68 2.6102 81.21 
DM-IEKF 107.9506 83.73 2.4708 85.79 
DM-UKF 100.7753 89.69 2.3434 90.45 
DM-PLKF 119.3649 75.73 2.7489 77.11 
DM-IPLKF 98.4613 91.8 2.2704 93.36 
DM-IVPLK

F 95.7343 94.42 2.215 95.7 

CRLB 90.3877 100 2.1197 100 

 

 

Table 2. Averaged runtime (ms) 
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Algorithm DM-EKF DM-IEKF DM-UKF 
Runtime 0.3469 0.3842 1.0809 

Algorithm DM-PLKF DM-IPLKF DM-IVPLKF 
Runtime 0.3215 0.3634 0.4316 

 

B. Tracking performance versus measurement noise 

This set of simulations examines the performance of the 
considered filtering algorithms as a function of measurement 
accuracy. Nine different measurement noise standard 
deviations n  are set, as shown in Table 3. Fig. 3 and Fig. 4 
show the RTAMS error of position and velocity estimation for 
different n  respectively.  

Table 3. Measurement noise standard deviation (mrad) 

n  1 1.5 2 2.5 3 3.5 4 4.5 5 
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Figure 3. RTAMS error of the position estimation versus the 

bearing measurement accuracy 
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Figure 4. RTAMS error of the velocity estimation versus the 

bearing measurement accuracy 

 

As expected, it can be observed that a degradation in 

performance as 
n  is increased. For DM-IVPLKF, the 

RTAMS error of position estimation is increased by 34% and 
the RTAMS error of velocity estimation is increased by 27% as 

n  is increased from 1mrad to 5mrad. In this study, the 
DM-IVPLKF achieves the best performance. The performance 
of the DM-PLKF is the worst in this set of simulations. 

Table 4 and Table 5 list the improvement in performance of 
the position and velocity estimation relative to a baseline 
filtering algorithm that is chosen to be the DM-PLKF for 

4.5mradn  . Thus, the improvement factor is defined as 

   

 

RTAMS DM-PLKF RTAMS filter
IF 100%

RTAMS DM-PLKF


   (48) 

It can be seen that the overall performance in the position and 
velocity estimation of the proposed DM-IVPLKF achieves 
21% and 19% improvement over the DM-PLKF , respectively. 
The DM-IVPLKF algorithm exhibit a significant performance 
improvement over the conventional DM-PLKF, DM-EKF, 
DM-IEKF, DM-UKF, and DM-IPLKF algorithms. 

Table 4 Improvement factor of the position estimation 
Algorithm DM-PLKF DM-EKF DM-IEKF 

IF 0 6% 10% 
Algorithm DM-UKF DM-IPLKF DM-IVPLKF 

IF 17% 19% 21% 

Table 5 Improvement factor of the velocity estimation 
Algorithm DM-PLKF DM-EKF DM-IEKF 

IF 0 4% 11% 
Algorithm DM-UKF DM-IPLKF DM-IVPLKF 

IF 15% 17% 19% 

V. CONCLUSIONS 
The distributed filter has become one of the most acclaimed 

methods for multisensor bearings-only tracking in the presence 
of clutter interference and missed detections. This article 
proposed a distributed multisensor fusion pseudolinear Kalman 
filter algorithm to solve the problems of nonlinear filtering and 
weak observation of BOT. For each sensor subsystem, the  
instrumental vector PLKF is used to estimate the target state 
independently. In the fusion center, the fusion estimation of the 
target state is obtained by using the multisensor optimal 
information fusion criterion. Simulations verified that the 
proposed filter performs accurately and is effective. The main 
drawback of the kind of PLKF is the biased estimation, which is 
to be addressed in the future work. We will work on unbiased 
filtering technology and better multisensor fusion technology. 
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