
 

 

 
Abstract— In this paper following the recent trends in 

IoT-based network attacks discovery and advancing 

further our previous research, in which we optimize and 

test single neural network, support vector machine and 

random forest classifiers for both the detection and 

recognition of multiple DDoS attacks, we propose results 

from newly developed combined classifiers. The first of 

them employs only a neural network and a random forest 

classifier, while the second use additionally a support 

vector machine. Both are implemented in two 

modifications – as detectors of malicious vs. normal traffic, 

and as classifiers of 10 types of attacks vs. non-attack 

samples. High classification accuracy is being obtained 

over the popular Bot-IoT dataset and it prove higher than 

that of the single classifiers. At the same time, it is also 

higher than other solutions, proposed in the practice. 

 

Keywords— DDoS, IoT, network attack, combined 

classifier, neural network, random forest, support vector 
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I. INTRODUCTION 
IoT-based botnet attacks affect the normal operation of 

numerous systems over public and private networks on a large 
scale [1]. Their negative effect renders unusable or highly 
limits the access to services, offered either from single 
machines or in distributed environment, including cloud 
infrastructure. One of the steps towards mitigating their 
influence is the on-time discovery of malicious network traffic, 
flowing between targeted and attacking machines. Machine 
learning offers as perspective mean into solving this task 
combined classifiers. 

In [2] Koay et al. propose entropy-based features within a 
classifier, consisting of Recurrent Neural Network (RNN), 
Multi-Layer Perceptron (MLP) Neural Network (NN) and 
Alternating Decision Tree (ADT). True Positive Rate of the 
 

 

attacks detection reaches 94.74%, compared to 90.04% for 
non entropy-based methods. Das et al. [3] undertake the 
opposite  approach of trying to identify reduced set of features 
with a number of ensemble models, each one aimed at 
different kind of attack, in order to increase detection 
accuracy. It is being reported as 99.1% when fusing the 
operation of MLP, Sequential Minimal Optimization (SMO) 
for Support Vector Machine (SVM), k-Nearest Neighbor (k-
NN), and Decision Trees (DT) through the C4.5 (J48) 
algorithm. Detection rate of the single classifiers, such as k-
NN and J48, does not exceed 97.8%. As Musumeci et al. [4] 
demonstrate, detection of DDoS based attacks could be 
implemented through the P4 language. They use Random 
Forest (RF), k-NN and SVM in order to process window 
features, derived from the input of a P4 switch and then place a 
decision if the outgoing traffic should be allowed. RF has 
98.5% detection accuracy alone. Mahfouz et. al [5], following 
their earlier research from [3], propose the use only of MLP, 
k-NN and J48 for the same purpose. Botnet attacks are being 
discovered with accuracy of 96.20% by J48, 96.50% - by k-
NN (IBK implementation), 93.50% - by the MLP, and 98.87% 
- by ensemble of these classifiers. Normal traffic and DDoS 
attacks of general type are detected with similar rates, but 
Brute Force and Infiltration activities are spotted with 
accuracy in the range of 91.60-96.70% and 80.57-88.69% 
among the tested classifiers, where further work could be 
undertaken to increase the performance.  

Algelal et al. [6], in a recent study, suggest the use of 
boosting, bagging and RF altogether with the base classifiers 
of JRip, Naïve Bayes (NB), and REPTree for detecting botnet 
activities. The detection accuracy among the three base 
classifiers, when using boosting, varies between 85.48% and 
99.84%, the same range for bagging and the RF alone leads to 
a result of 95.11%. Khraisat et al. [7] take a bit different 
approach by constructing 3-stage ensemble for classification of 
IoT-based attacks. In the 1st stage they use the C5 algorithm, 
for which the F1-measure into discovering DDoS attacks is 

IoT-based Network Attacks Discovery with 
Combined Classifiers 

Vanya Ivanova, Tasho Tashev, Ivo Draganov 
PhD School, French Faculty of Electrical Engineering 

Technical University of Sofia 
8 Kliment Ohridski Blvd., 1756 Sofia 

Bulgaria 
 
  

Received: July 21, 2021. Revised: January 15, 2022. Accepted: February 2, 2022.  
Published: February 28, 2022.   

 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2022.16.93 Volume 16, 2022

E-ISSN: 1998-4464 754



 

 

0.998. Reconnaissance activities yield 0.327. The 2nd stage 
incorporates SVM leading to F1 for Intrusion samples of 
0.935, and for normal traffic – 0.920. The final, 3rd stage, 
combines the C5 and SVM together. Reconnaissance F1 
measure is 0.353. The overall accuracy for stage 1 is 93.30%, 
for 2 – 92.50%, and for 3 – 99.97%. Rajagopal et al. [8] 
implement a stacking ensemble, consisting of RF, Logistic 
Regression (LR) and k-NN with which they achieve accuracy 
of binary classification over multiple network attacks of 0.94. 
Classifying 10 types of attacks the ensemble achieves 
Precision between 41.6% and 99.42% among them with 
Recall, varying between 10.79% and 98.32%. Iwendi et al. [9] 
apply correlation-based feature selection prior classifying 
network attacks, part of which Denial of Service (DoS) 
attempts, with bagging and Adaboost classifiers. Detection rate 
varies between 98.60% and 99.90% between two datasets 
used. Another research, described by Jain et al. [10], employs 
the NB, SVM, k-NN, and RF classifiers for discovering DDoS 
attacks and simultaneously they are tried as ensemble. The 
combined classifier yielded a F score of 0.9962, while the NB 
as least performing discriminator achieved 0.9942 for the same 
parameter. Zhou et al. [11] use C4.5, RF and Forest by 
Penalizing Attributes (ForestPA) in ensemble for attacks 
recognition. Applying the correlation feature selection method 
and reducing the initial set from 41 to only 10 features, they 
are able to achieve detection rate of 0.998 for 4 types of 
attacks and normal traffic samples. 

Following the recent trends in IoT-based network attacks 
discovery, some of which described above, and advancing 
further our previous research [12, 13, 14, 15], in which we 
optimize and test single NN, SVM and RF classifiers for both 
the detection and recognition tasks, in this paper we propose 
results from newly proposed combined classifiers. The first of 
them employs only NN and RF classifiers, while the second – 
NN, RF, and SVM. Both are implemented in two 
modifications – as detectors of malicious vs. normal traffic, 
and as classifiers of 10 types of attacks vs. non-attack samples. 
High classification accuracy is being obtained over the popular 
Bot-IoT dataset [16] and it prove higher than that of the single 
classifiers. In the same time, it is also higher than other 
solutions, proposed by other authors. 

In Section 2, the description of the binary and multi-attack 
classifiers is given, followed by the experimental results in 
Section 3. They are discussed in Section 4 and conclusions 
follow in Section 5. 

II. COMBINED CLASSIFIERS DESCRIPTION 

A. Combined binary classifier 

The precise form of the likelihood function of the combined 
binary classifier (detector), proposed in this section, could be 
derived, as shown below, following the general approach, 
given in [17]. 
The output of the single detectors NN, RF and SVM are o1 ∈ 
{0, 1}, o2 ∈ {0, 1} and o3 ∈ {0, 1}, respectively. The value of 
0 denotes sample from normal traffic and 1 – an attack. The 

output from the Logistic Regression module is O ∈ {0, 1}. The 
probability to have an attack, given the decision of the 
combined classifier is p=P(O=1). According to the structure of 
the detector from Fig. 1, the log-odds is: 
 

 , (1) 
 
where k0, k1, k2, and k3 are the parameters of the detection 
model. Raising the left and right side of (1) over e leads to: 

 
                          ,                (2) 

 
which in turn gives: 

 

 
                  .           (3) 

 
 

 
 

Figure 1. Structure of the proposed classifier 
 

In general form, assuming a linear model, the following 
parametrized function could be defined: 

 
 , (4) 

 
 
where  and . Then, 

 and the probability for 
particular observation o ∈ {O} is given by: 

 

 . (5) 
 
The likelihood function then is expressed as: 
 

   

 .  (6) 
 
The logarithm of L as likelihood function should be 

maximized using the gradient descent algorithm [18]. 
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B. Combined multi-attack classifier 

Classification of the input samples into 10 types of attacks 
and normal instances, that is o1, o2, o3, O ∈ {0, 1, 2, …, 10} 
could be achieved by the single classifiers from Fig. 1 after 
combining them with the use of logistic regression of 
multinomial type. 

Following the general approach from [17] and given an 
exemplary vector of outputs from the single classifiers 

, obtained as a result from the i-th 

observation from the input, a prediction function of linear type 
could be defined, following: 
                       
       ,                             (7)       
 
where c is a current class, c ∈ {C} ≡ {0, 1, 2, …, 10} – one of 
the possible outcomes from classification,  – vector of 
weights, associated with the c-th class, and S is the score for 
the level of belonging of  to c. 

The following expression holds true: 

                           .                     (8) 

 
It is related to the fact, that the complete multinomial model 

with C possible output values could be built upon C-1 binary 
logistic regressions, which are independent among themselves. 
One of the resulting outputs is selected as a base and the rest 
C-1 are processed taking it as a reference. If the reference is c 
= 0, then we come to (8). 

Putting the left and right side of (8) to exponent will 
eventually give: 
 

                             (9) 

 
and taking into account that all possible outputs form a full set, 
then: 
 

 
                           .          (10) 
 

From (10) it easy to find that: 
 

                      ,        (11) 

 

along with: 
 

                .            (12) 

 
 
The components of the vectors , j = 1, 2, …, 10 could be 

found using he maximum a posteriori method [19]. Ranking 
the probabilities from (11)-(12) for every input  leads to the 

predicted type of attack or its absence. 
The output of the NN is [13]: 

 
            (13) 

 
 
where  is the output of the i-th neuron from the output layer 
k; k = 3 for the detector and k = 9 for the classifier;  – the 
bias for the same neuron;  – the output for the j-th neuron 
from the previous layer (k-1);  – the weight of neuron i from 
layer k, connecting it to neuron j from (k-1)-th layer; Nk – the 
number of neurons in layer k.  

In the same time, the output from the RF could be found 
easily, taking into account the considerations of its generation, 
given in [20]: 

 , (14) 
 
where  is the i-th vector from the training set for i = 1, 2, …, 
n; yi – the associated label for ;  - the current input test 
sample to be classified;  – weight function for the j-th 
decision tree from the forest after training the RF, j = 1, 2, …, 
m. 

The last output o3, associated with the SVM, could be 
derived from the equations, describing its principle from [21]: 

 
 , (15) 

where  is coefficient, associated with the i-th support vector 
, having a label , i = 1, 2, …, m; b – a bias. 

Substituting (13)-(15) in (5) for the combined detector and 
in (11)-(12) for the combined classifier leads to the decision 
function in its complete form for both of them. 
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III. EXPERIMENTAL RESULTS 

A. Experimental setup 

The test environment includes the following hardware 
components: 64-bit 4 core CPU Xeon E5-1620 with base 
frequency 3.5 GHz and 256 kB cache at level L1, 1 MB – at 
L2, and 10 MB – at L3, 64 GB of RAM and 7200 rpm 2 TB 
HDD. Implementation of all classifiers has been done within 
the Orange v. 3.28 machine learning application, running 
under the 64-bit MS Windows Pro 10 operating system. 

The experimental dataset [16] includes 2934817 training 
samples with 370 of them gathered from normal traffic and 
733705 test samples with 107 instances from normal traffic. 
The class (Cl.) for this type of samples is indexed as 0. The 
other attacks are: 1 – DoS TCP flood, 2 – DoS UDP flood, 3 – 
DoS HTTP flood, 4 – DDoS TCP flood, 5 – DDoS UDP, 6 – 
DDoS HTTP flood, 7 – Keylogging, 8 – Data Theft, 9 – OS 
Fingerprinting, 10 – Service Scanning. When making binary 
classification Cl. = 1 means an attack. The complete features 
contain 10 components: seq – number of the sequence for a 
record, stddev – standard deviation of records from particular 
type, N_IN_Conn_P_SrcIP – number of input connections for 
the attacking machine, , min – minimal duration time of a 
connection in the record, state_number – state of the record, 
mean – average time of connection for a record, 
N_IN_Conn_P_DstIP – number of input connections for the 
attacked machine, drate – packets per second from the attacked 
machine to the attacker, srate – packets per second from the 
attacking machine to the attacked one,  max – maximal 
duration of connection for a particular record. As some of our 
previous research suggests [12, 13, 14, 15], this set of 10 
features could be reduced to 8, omitting the seq and 
N_IN_Conn_P_SrcIP (being least informative), still 
preserving the classification accuracy of attacks in some cases. 
This is the motivation of trying the reduced set here as well in 
all the experiments, described below. 

An optimal configuration of a feedforward neural network 
with back propagation, proposed in our previous study [12] 
and acting as a detector, consists of 60 neurons in a single 
hidden layer, when using 10 features and 80 neurons – for 8. 
The optimal configuration of the same type of network [13], 
operating as multi-attack classifier, consists of the following 
number of neurons in the hidden layers – 30-40-40-60-80-80-
100 for both 8 and 10 features, employing the tangent 
hyperbolic activation function. All neural networks use the 
Adam training algorithm in no more than 1000 epochs, found 
to be sufficient to get the most accurate results, while the 
regularization parameter is α = 0.0001. 

From other earlier study of ours [14], an optimal 
configuration for the SVM is found as: Radial Basis Function 
(RBF) for the kernel, cost parameter C = 1,  numerical 
tolerance NT = 10-3, valid for both the detector and classifier 
implementations. The iteration limit, tested to be enough for 
getting sufficient precision, is IL = 105 for the detector and 
106 for the classifier. 

Another preceding research, carried out over the same 

dataset by us [15] with a RF reveal that the optimal number of 
trees is 10 and the minimal number of subsets to split is 5. 

All classifiers’ configuration parameters from above are 
used within this study to evaluate the work of the combined 
classifiers (Fig. 1), denoted as NN+RF+SVM – operating once 
as detectors, discriminating malicious vs. normal traffic at 8 
and 10 features, and then as classifiers of the 10 types of 
attacks along with the normal traffic samples, again at 8 and 10 
features. Simplified configuration of the combined classifiers, 
excluding the SVM and retaining only the NN and RF, is also 
tested, given the same initialization conditions. These 
implementations are denoted as NN+RF. 

The rate of correct classifications is being evaluated by the 
Area Under the Curve (AUC), Classification Accuracy (CA), 
F1-measure, Precision, Recall, Log-loss and Specificity 
parameters, which precise definitions could be found in [12]. 

 

B. Classification efficiency 

Training, validation and testing times for all detectors are 
given in Table 1. Validation is made over the complete 
training set after the training process is over. This approach is 
also applied for the multi-attack classifiers. 

 
Table 1. Detectors processing times 

Detector Features Training 
Time, sec 

Validation 
Time, sec 

Test 
time, sec 

NN+RF 
8 1541.12 16.82 4.66 
10 1914.30 23.22 5.86 

NN+RF+ 
SVM 

8 412175.32 316.97 79.16 
10 197624.27 337.28 84.24 

 
The training, validation and testing times for all investigated 

classifiers are presented in Table 2. Initial tests, when the 
iteration limit for the SVM is set to IL = 106, revealed 
extremely long training time at 10 features - 2169798.82 sec. 
Subsequent testing revealed that the overall classification 
accuracy is sustained at comparable levels when decreasing the 
IL to 1000 and all results from below are obtained with that 
tuning parameter for the SVM. 

 
Table 2. Classifiers processing times 

Detector Features Training 
Time, sec 

Validation 
Time, sec 

Test 
time, 
sec 

NN+RF 8 40809.83 106.83 31.78 
10 80890.32 84.87 29.70 

NN+RF+ 
SVM 

8 123599.38 4935.23 1364.18 
10 195493.99 5020.27 1274.48 

 
Detection accuracy for the 2-component detector at 8 

features is given in Table 3 for both the validation over the 
training set and testing with unknown samples. The same 
procedure led to the results for the NN+RF detector, when 
employing 10 features, given in Table 4. 
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Table 3. NN+RF attack detection efficiency using 8 features 

Set Cl. AUC CA F1 Pre-
cision Recall 

Log-
loss, 
.10-5 

Specifi-
city 

Tr
ai

n 

0 0.9999 0.9999 0.9836 0.9917 0.9756 2.3153 0.9999 
1 0.9999 0.9999 0.9999 0.9999 0.9999 2.3153 0.9756 

Av. 0.9999 0.9999 0.9999 0.9999 0.9999 2.3153 0.9756 

Te
st

 0 0.9999 0.9999 0.9509 1.0000 0.9065 5.7629 1.0000 
1 0.9999 0.9999 0.9999 0.9999 1.0000 5.7629 0.9065 

Av. 0.9999 0.9999 0.9999 0.9999 0.9999 5.7629 0.9065 

 
Table 4. NN+RF attack detection efficiency using 10 features 

Set Cl. AUC CA F1 Pre-
cision Recall 

Log-
loss, 
.10-5 

Specifi-
city 

Tr
ai

n 

0 0.9999 0.9999 0.9891 0.9945 0.9837 1.3824 0.9999 
1 0.9999 0.9999 0.9999 0.9999 0.9999 1.3824 0.9837 

Av. 0.9999 0.9999 0.9999 0.9999 0.9999 1.3824 0.9837 

Te
st

 0 0.9999 0.9999 0.9463 0.9897 0.9065 8.7592 0.9999 
1 0.9999 0.9999 0.9999 0.9999 0.9999 8.7592 0.9065 

Av. 0.9999 0.9999 0.9999 0.9999 0.9999 8.7592 0.9065 

 
Adding the SVM to the combined detector change the 

accuracy, according to Table 5. 
  

Set Cl. AUC CA F1 Pre-
cision Recall 

Log-
loss, 
.10-5 

Specifi-
city 

Tr
ai

n 

0 0.9999 0.9999 0.9781 0.9889 0.9675 2.4250 0.9999 
1 0.9999 0.9999 0.9999 0.9999 0.9999 2.4250 0.9675 

Av. 0.9999 0.9999 0.9999 0.9999 0.9999 2.4250 0.9675 

Te
st

 0 0.9999 0.9999 0.9463 0.9897 0.9065 8.0676 0.9999 
1 0.9999 0.9999 0.9999 0.9999 0.9999 8.0676 0.9065 

Av. 0.9999 0.9999 0.9999 0.9999 0.9999 8.0676 0.9065 

Table 5: NN+RF+SVM attack detection efficiency using 8 
features 

 
Increasing the number of components of the feature vector 

to 10 in the NN+RF+SVM detector result in discriminating 
rates as revealed by Table 6. 

 
Table 6. NN+RF+SVM attack detection efficiency using 10 features 

Set Cl. AUC CA F1 Pre-
cision Recall 

Log-
loss, 
.10-5 

Specifi-
city 

Tr
ai

n 

0 0.9999 0.9999 0.9932 0.9972 0.9891 1.2962 0.9999 
1 0.9999 0.9999 0.9999 0.9999 0.9999 1.2962 0.9891 

Av. 0.9999 0.9999 0.9999 0.9999 0.9999 1.2962 0.9891 

Te
st

 0 0.9999 0.9999 0.9306 0.9894 0.8785 6.8347 0.9999 
1 0.9999 0.9999 0.9999 0.9999 0.9999 6.8347 0.8785 

Av. 0.9999 0.9999 0.9999 0.9999 0.9999 6.8347 0.8785 

 
Confusion matrices from validation over the training set and 

processing the test set for all detectors from the 
experimentation are given in Fig. 2. 

 

 
 

 
 

 

 
 

Figure 2.. Detectors confusion matrices: a – NN+RF train at 8 
features, b – NN+RF test at 8 features, c – NN+RF train at 10 

features, d – NN+RF test at 10 features, e - NN+RF+SVM train 
at 8 features, f - NN+RF+SVM test at 8 features, g – 

NN+RF+SVM test at 10 features, h – NN+RF+SVM test at 10 
features 

 
The accuracy rate from validation of the NN+RF 

implementation at 8 features is presented in Table 7. 
 
Table 7. NN+RF train classification efficiency using 8 features 

Set Cl. AUC CA F1 Pre-
cision Recall 

Log-
loss, 
.10-5 

Specifi-
city 

Tr
ai

ni
ng

 
0 0.9999 0.9999 0.9905 0.9892 0.9918 1.6283 0.9999 
1 0.9999 0.9992 0.9976 0.9971 0.9981 234.76 0.9994 
2 0.9999 0.9999 0.9999 0.9999 0.9999 1.5162 0.9999 
3 0.9999 0.9999 0.9970 0.9983 0.9957 1.4436 0.9999 
4 0.9999 0.9990 0.9981 0.9980 0.9982 375.05 0.9992 
5 0.9999 0.9999 0.9999 0.9999 0.9999 1.0906 0.9999 
6 0.9999 0.9999 0.9974 0.9961 0.9987 1.3483 0.9999 
7 0.9999 0.9999 0.8888 0.9795 0.8135 1.2793 0.9999 
8 0.9999 0.9999 N/A N/A N/A 1.0052 1.0000 
9 0.9968 0.9957 0.2908 0.8175 0.1768 888.81 0.9998 

10 0.9993 0.9958 0.9041 0.8348 0.9860 0.0086 0.9960 
Av. 0.9995 0.9990 0.9064 0.9610 0.8958 137.08 0.9994 

 
Table 8 contains the accuracy related parameters for the 

same classifier, again at 8 features. 
 

Table 8. NN+RF test classification efficiency using 8 features 

Set Cl. AUC CA F1 Pre-
cision Recall 

Log-
loss, 
.10-5 

Specifi-
city 

Te
st

in
g 

0 0.9999 0.9999 0.9581 0.9537 0.9626 4.1419 0.9999 
1 0.9999 0.9988 0.9965 0.9962 0.9968 386.01 0.9992 
2 0.9999 0.9999 0.9999 0.9999 0.9999 6.2336 0.9999 
3 0.9999 0.9999 0.9866 0.9899 0.9833 4.4529 0.9999 
4 0.9999 0.9986 0.9974 0.9972 0.9976 517.63 0.9990 
5 0.9999 0.9999 0.9999 0.9999 0.9999 4.1026 0.9999 
6 0.9999 0.9999 0.9850 0.9949 0.9753 6.0413 0.9999 
7 0.9999 0.9999 0.6956 0.8888 0.5714 3.7190 0.9999 
8 1.0000 0.9999 N/A N/A N/A 0.7461 1.0000 
9 0.9960 0.9953 0.2319 0.6563 0.1408 990.47 0.9996 

10 0.9991 0.9954 0.8940 0.8239 0.9773 971.64 0.9957 
Av. 0.9994 0.9941 0.9928 0.9934 0.9941 1470.8 0.9995 

 
Switching to 10 features as input to the NN+RF classifier 

change the validation results as shown in Table 9. 
 
Table 9. NN+RF train classification efficiency using 10 features 

Set Cl. AUC CA F1 Pre-
cision Recall 

Log-
loss, 
.10-5 

Specifi-
city 

Tr
ai

ni
ng

 

0 0.9999 0.9999 0.9946 0.9919 0.9972 0.9392 0.9999 
1 0.9999 0.9999 0.9999 0.9999 0.9999 1.4503 0.9999 
2 0.9999 0.9999 0.9999 1.0000 0.9999 1.0794 1.0000 
3 0.9999 0.9999 0.9995 1.0000 0.9991 0.8359 1.0000 
4 0.9999 0.9999 0.9999 0.9999 0.9999 1.5220 0.9999 
5 1.0000 1.0000 1.0000 1.0000 1.0000 0.6572 1.0000 
6 0.9999 0.9999 0.9993 0.9987 1.0000 0.6732 0.9999 
7 0.9999 0.9999 0.9473 0.9818 0.9152 1.0499 0.9999 
8 0.9999 0.9999 0.6666 1.0000 0.5000 0.4979 1.0000 
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9 0.9999 0.9997 0.9780 0.9859 0.9701 73.688 0.9999 
10 0.9999 0.9997 0.9946 0.9927 0.9966 73.730 0.9998 
Av. 0.9999 0.9998 0.9617 0.9955 0.9434 17.016 0.9999 

 
The test set yields classification rate in the same 

configuration as the above, presented in Table 10. 
 

Table 10. NN+RF test classification efficiency using 10 features 

Set Cl. AUC CA F1 Pre-
cision Recall 

Log-
loss, 
.10-5 

Specifi-
city 

Te
st

in
g 

0 0.9999 0.9999 0.9619 0.9805 0.9439 3.1206 0.9999 
1 0.9999 0.9999 0.9999 0.9999 0.9999 8.7560 0.9999 
2 0.9999 0.9999 0.9999 0.9999 0.9999 4.8040 0.9999 
3 0.9999 0.9999 0.9900 0.9900 0.9900 2.5594 0.9999 
4 0.9999 0.9999 0.9999 0.9999 0.9999 8.9424 0.9999 
5 0.9999 0.9999 0.9999 0.9999 0.9999 2.0062 0.9999 
6 0.9999 0.9999 0.9877 0.9852 0.9901 2.1907 0.9999 
7 0.9999 0.9999 0.9230 1.0000 0.8571 1.2890 1.0000 
8 0.9999 1.0000 1.0000 1.0000 1.0000 0.3904 1.0000 
9 0.9998 0.9992 0.9212 0.9456 0.8980 207.13 0.9997 

10 0.9999 0.9992 0.9806 0.9745 0.9869 209.16 0.9994 
Av. 0.9998 0.9991 0.9991 0.9991 0.9991 227.82 0.9999 

 
The 3-component NN+RF+SVM classifier, using 8 features, 

produce validation results, observable in Table 11. 
 
Table 11. NN+RF+SVM train classification efficiency using 8 

features 

Set Cl. AUC CA F1 Pre-
cision Recall 

Log-
loss, 
.10-5 

Specifi-
city 

Tr
ai

ni
ng

 

0 0.9999 0.9999 0.9811 0.9784 0.9837 1.9083 0.9999 
1 0.9999 0.9992 0.9976 0.9972 0.9980 233.38 0.9994 
2 0.9999 0.9999 0.9999 0.9999 0.9999 1.5891 0.9999 
3 0.9999 0.9999 0.9966 0.9983 0.9949 1.5730 0.9999 
4 0.9999 0.9990 0.9981 0.9980 0.9982 368.36 0.9992 
5 0.9999 0.9999 0.9999 0.9999 0.9999 1.3275 0.9999 
6 0.9999 0.9999 0.9949 0.9949 0.9949 2.1150 0.9999 
7 0.9999 0.9999 0.9491 0.9491 0.9491 0.9478 0.9999 
8 0.9999 0.9999 N/A N/A N/A 0.7558 1.0000 
9 0.9969 0.9957 0.2890 0.8129 0.1757 882.05 0.9998 

10 0.9993 0.9958 0.9038 0.8346 0.9856 862.98 0.9960 
Av. 0.9975 0.9948 0.9937 0.9947 0.9948 1192.9 0.9996 

 
In the same time, testing with unknown samples changes 

these values as noted in Table 12. 
 

Table 12. NN+RF+SVM test classification efficiency using 8 features 

Set Cl. AUC CA F1 Pre-
cision Recall 

Log-
loss, 
.10-5 

Specifi-
city 

Te
st

in
g 

0 0.9999 0.9999 0.9668 0.9807 0.9532 5.1888 0.9999 
1 0.9999 0.9988 0.9967 0.9961 0.9973 370.95 0.9992 
2 0.9999 0.9999 0.9999 0.9999 0.9999 5.8489 0.9999 
3 0.9999 0.9999 0.9867 0.9867 0.9867 4.5821 0.9999 
4 0.9999 0.9986 0.9975 0.9975 0.9975 499.21 0.9991 
5 0.9999 0.9999 0.9999 0.9999 0.9999 3.5179 0.9999 
6 0.9998 0.9999 0.9775 0.9898 0.9655 7.6863 0.9999 
7 0.9999 0.9999 0.7500 0.9000 0.6428 4.2446 0.9999 
8 1.0000 0.9999 N/A N/A N/A 0.5183 1.0000 
9 0.9960 0.9953 0.2219 0.6607 0.1333 0.0096 0.9996 

10 0.9991 0.9954 0.8943 0.8232 0.9789 947.85 0.9957 
Av. 0.9994 0.9941 0.9928 0.9934 0.9941 1431.2 0.9995 

 
The final, most comprehensive configuration - 

NN+RF+SVM classifier with 10 features has validation 
accuracy as shown in Table 13. 

 
Table 13. NN+RF+SVM train classification efficiency using 10 

features 

Set Cl. AUC CA F1 Pre-
cision Recall 

Log-
loss, 
.10-5 

Specifi-
city 

Tr
ai

ni
n

g 

0 0.9999 0.9999 0.9866 0.9736 1.0000 1.0956 0.9999 
1 0.9999 0.9999 0.9999 0.9999 0.9999 1.6971 0.9999 
2 0.9999 0.9999 0.9999 0.9999 0.9999 1.1746 0.9999 
3 1.0000 1.0000 1.0000 1.0000 1.0000 0.7480 1.0000 

4 0.9999 0.9999 0.9999 0.9999 0.9999 1.5309 0.9999 
5 1.0000 0.9999 0.9999 1.0000 0.9999 0.6542 1.0000 
6 1.0000 0.9999 0.9987 1.0000 0.9974 0.6026 1.0000 
7 0.9999 0.9999 0.9464 1.0000 0.8983 0.8923 1.0000 
8 0.9999 0.9999 0.7272 0.8000 0.6666 0.3817 0.9999 
9 0.9999 0.9997 0.9777 0.9866 0.9690 74.302 0.9999 

10 0.9999 0.9997 0.9946 0.9924 0.9967 74.371 0.9998 
Av. 0.9999 0.9997 0.9997 0.9997 0.9997 79.146 0.9999 

 
Its accuracy, being tested with unknown samples, could be 

observed in Table 14.  
 
Table 14. NN+RF+SVM test classification efficiency using 10 

features 

Set Cl. AUC CA F1 Pre-
cision Recall 

Log-
loss, 
.10-5 

Specifi-
city 

Te
st

in
g 

0 0.9999 0.9999 0.9532 0.9532 0.9532 4.3080 0.9999 
1 0.9999 0.9999 0.9999 0.9999 0.9999 9.7101 0.9999 
2 0.9999 0.9999 0.9999 0.9999 0.9999 5.8957 0.9999 
3 0.9999 0.9999 0.9933 0.9966 0.9900 2.0255 0.9999 
4 0.9999 0.9999 0.9999 0.9999 0.9999 8.9609 0.9999 
5 0.9999 0.9999 0.9999 0.9999 0.9999 2.5380 0.9999 
6 0.9999 0.9999 0.9950 0.9950 0.9950 1.9193 0.9999 
7 1.0000 0.9999 0.9230 1.0000 0.8571 1.0250 1.0000 
8 1.0000 1.0000 1.0000 1.0000 1.0000 0.2286 1.0000 
9 0.9998 0.9991 0.9153 0.9390 0.8928 210.45 0.9997 

10 0.9999 0.9991 0.9794 0.9734 0.9855 211.18 0.9994 
Av. 0.9999 0.9991 0.9991 0.9991 0.9991 232.02 0.9999 

 
In Tables 7-14, whenever N/A appears as a resulting value 

for some of the parameters, it is related to inability to calculate 
this value with enough precision. 

Confusion matrices from classification with NN+RF are 
shown in Fig. 3. 

 

a. 

b. 
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c. 

d. 
Figure 3. NN+RF classifiers confusion matrices from: a – train 

set at 8 features, b – test set at 8 features, c – train set at 10 
features, d – test set at 10 features   

 
Fig. 4 depicts the confusion matrices from classification 

with NN+RF+SVM. The experiment here is also implemented 
in two ways – first, using only the 8-component feature vectors 
for both the validation and testing, and then repeating this 
procedures with the 10-component vectors. 

 

a. 

b. 

c. 

d. 
Figure 4. NN+RF+SVM classifiers confusion matrices from: a – 
train set at 8 features, b – test set at 8 features, c – train set at 10 

features, d – test set at 10 features 

IV. DISCUSSION 
The most accurate of all combined detectors turns to be the 

NN+RF, using 8 features with only 10 wrongly classified non-
attack samples as attacks (Fig.2.b). Testing time takes 4.66 sec 
(Table 1). All the other 3 configurations seem to be very close 
by classification accuracy – 13 erroneously classified non-
attacks and 1 attack being missed by the NN+RF+SVM, using 
10 features and being the most inaccurate detector (Fig. 2.h). 
Training, validation and testing times for the NN+RF rise 1.24, 
1.38 and 1.26 times, respectively at 10 features, compared to 
8. There is a drop in training time by 2.09 times at 10 features, 
related to 8, for the NN+RF+SVM, while the validation and 
testing times increase by 1.06 times. This result could be 
explained by the longer process it takes for the SVM to reach 
targeted accuracy when being fed with the less informative 8-
feature set. The optimal configuration of the feedforward 
neural network (NN) alone from our previous study [12] yields 
errors for 9 non-attack and 27 attack samples for 2.45 sec. 
Optimal single RF [14] classify incorrectly 4 attack and 2 
attack samples in 6.21 sec. If a particular DDoS prevention, 
already using a NN of the kind presented here needs to be 
improved, then it could take as a second classifier the RF. If 
such a system should be design from scratch it is more 
appropriate to use a single RF detector. All these results are 
additionally supported by the accuracy parameters, given in 
Tables 3-6. 

Classification over the 10 types of attacks, using the 
NN+RF classifier, for both 8- and 10-feature implementations 
takes almost the same time of around 100 sec for the validation 
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process and around 30 sec for processing the test set (Table 2). 
Similar is the case for the NN+RF+SVM in its two variants 
with around 5000 sec for validation and around 1300 sec for 
testing, visible from the same table. Training time rises for 
both NN+RF and NN+RF+SVM, when switching from 8 to 10 
features. The increase is 1.58 and 1.98 times, respectively 
(Table 2). Discrimination in more than 2 classes does not 
imply longer training for the reduced set of features, when the 
SVM is part of the combined classifier, as it is the case with 
the detector. The most accurate on average from all handled 
attacks and normal traffic appears the NN+RF+SVM 
classifier, using 10 features (Fig. 4.d) with 97.03% correctly 
classified samples. It is very tightly followed by the NN+RF 
with 10 features, achieving 96.96% (Fig. 3.d). For most of the 
attacks both classifiers are very close in accuracy, diverging 
one from the other by a few samples (from 1 to 3) and only for 
the OS Fingerprinting (9) and Service Scanning (10) the 
difference is 19 and 20 samples in flavor for the NN+RF 
classifier. Given the smaller training time with a factor of 2.42 
and the more significant difference of 42.91 times less for the 
test time of NN+RF, compared to NN+RF+SVM (Table 2), it 
could be recommended the use of NN+RF at 10 features in the 
general case for discovering the types of attacks under 
consideration in this study. Deeper analysis for this classifier 
(Fig. 3.d) reveals that mostly (at least 0.1% difference) 
mismatching of non-attack samples happens as samples of DoS 
UDP flood (0.9%), DDoS HTTP flood (0.9%), and Service 
Scanning (3.7%); for DoS HTTP flood – with samples as 
DDoS TCP flood (0.3%) and DDoS HTTP flood (0.7%); for 
DDoS HTTP flood – with samples as DDoS TCP flood (0.5%) 
and Service Scanning (0.5%); for Keylogging – as DDoS UDP 
(7.1%) and Service Scanning (7.1%); for OS Fingerprinting – 
as Service Scanning (10.2%); and for Service Scanning – as 
OS Fingerprinting (1.3%). Further development of the 
combined classifier, possibly by extending it with another type 
of a single classifier, could further reduce the mismatching rate 
among listed attacks. All these observations are additionally 
supported by the values of accuracy parameters from Tables 7-
14. Comparison by the relative number of correctly detected 
samples from the test set with our previous study on the RF 
single classifier [15] over the same dataset, proven to be more 
accurate than the NN [13] and the SVM [14], which we also 
tested, is given in Table 15. 

 
Table 15. Accuracy comparison, in %, between the optimal NN+RF, 

proposed here, and the RF, from [15], classifiers 
Attack 0 1 2 3 4 5 

NN+RF 94.4 100.0 100.0 99.0 100.0 100.0 
RF, [15] 91.6 100.0 100.0 99.7 100.0 100.0 
Attack 6 7 8 9 10 - 

NN+RF 99.0 85.7 100.0 89.8 98.7 - 
RF, [15] 99.0 92.9 0.00 91.2 98.4 - 

 
One of the major advantages of the combined classifier, 

proposed here is the higher rate of detected non-attack samples 
(Table 15). The RF [15] process the same amount of test 
samples for 12.69 sec, while for the NN+RF it takes 29.70 sec. 

If the false alarm rate is not crucial for the particular 
application, the RF alone could also be employed. 

Another comparison, related to the accuracy of the proposed 
here optimal detector NN+RF at 8 features with the accuracy 
of 3 other types of detectors, proposed by other authors and 
tested with the same dataset [16], is given in Table 16 

 
Table 16. Accuracy comparison of attack detectors 

Detector 
SVM, 
[16], 

10 features 

RNN, 
[16], 

10 features 

LSTM, 
[16] 

10 features 

Proposed 
NN+RF,  
8 features 

CA 0.8837 0.9974 0.9974 0.9999 
Precision 1.0000 0.9999 0.9999 0.9999 

Recall 0.8837 0.9975 0.9975 0.9999 
 
The classification efficiency of the NN+RF implementation 

from this study, working with 10 features, is being compared 
with an RNN classifier [16], tested over the same dataset. The 
results are given in Table 17. The Classification Accuracy 
(CA) parameter is being equal for the DDoS TCP, DDoS UDP, 
DoS HTTP, DoS TCP, and DoS UDP attacks for both 
classifiers. NN+RF, using 10 features, has higher CA for the 
DDoS HTTP, DoS HTTP, OS Fingerprinting, Service Scan, 
Data Exfiltration, and Keylogging by 0.67%, 1.93%, 0.75%, 
0.35%, 1.24%, and 1.26%, respectively. Nevertheless, some of 
the values for Precision and Recall are smaller for the 
proposed here classifier, such as those for DDoS HTTP, OS 
Fingerprinting, Service Scan, and Keylogging (just for the 
Recall) attacks. Taking into account the confusion matrix from 
Fig. 3.d, it could be investigated further the distribution of 
False Negatives along the rows of the respective attacks. Then, 
observing in detail the components of the feature vectors for 
these samples as mutual distributions with the components of 
features from other attacks, it could bring as a hint possible 
extension of the employed features for further improvement of 
those 2 parameters – Precision and Recall, for this particular 
classes. The current overall performance of the proposed in 
this paper classifier is considered high enough, both from 
computational standpoint and as an accurate mean to 
discriminate some of the most typical IoT-based network 
attacks. 

 
Table 17. Accuracy comparison of attack classifiers 

Attack 
DDoS HTTP DDoS TCP 

RNN, [16] Proposed RNN, [16] Proposed 
CA 0.9932 0.9999 0.9999 0.9999 

Precision 0.9930 0.9852 0.9999 0.9999 
Recall 0.9970 0.9901 0.9999 0.9999 

Attack 
DDoS UDP DoS HTTP 

RNN, [16] Proposed RNN, [16] Proposed 
CA 0.9999 0.9999 0.9806 0.9999 

Precision 0.9999 0.9999 0.9898 0.9900 
Recall 0.9999 0.9999 0.9845 0.9900 

Attack 
DoS TCP DoS UDP 

RNN, [16] Proposed RNN, [16] Proposed 
CA 0.9999 0.9999 0.9999 0.9999 

Precision 0.9999 0.9999 0.9999 0.9999 
Recall 0.9999 0.9999 0.9999 0.9999 
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Attack 
OS Fingerprinting Service Scan 

RNN, [16] Proposed RNN, [16] Proposed 
CA 0.9917 0.9992 0.9957 0.9992 

Precision 0.9984 0.9456 0.9986 0.9745 
Recall 0.9931 0.8980 0.9971 0.9869 

Attack 
Data exfiltration Keylogging 

RNN, [16] Proposed RNN, [16] Proposed 
CA 0.9876 1.0000 0.9873 0.9999 

Precision 0.0000 1.0000 0.9853 1.0000 
Recall 0.0000 1.0000 0.9178 0.8571 

 

V. CONCLUSION 
In this paper 4 new models of binary classifiers of IoT-

based network attacks are proposed. The first is a 2-link 
detector, discriminating normal traffic samples from 10 types 
of attacks samples (DoS and DDoS kinds of TCP, UDP and 
HTTP floods, Keylogging, Data Theft, OS Fingerprinting, and 
Service Scanning). It is comprised of feedforward neural 
network with 1 hidden layer and a random forest, connected 
through a logistic regression. The second is 3-link detector – 
with an additional support vector machine. One pair of 
detectors operate over 8 feature vectors, and the other pair – 
over 10 feature vectors - with 2 new different components 
from the first. The error rate of the 2-link detector at 8 features 
is 1.36.10-3%, and 1.50.10-3% at 10 features. The 3-link 
detector has 1.50.10-3% error rate at 8 features and 1.91.10-3% 
- at 10 features. The errors are mostly concentrated in the non-
attack samples. The neural network alone, as our previous 
study suggests, has an error rate of 4.91.10-3% in its optimal 
configuration as a detector, working with 10 features. From 
another 2 preceding studies of ours, it is estimated that the 
support vector machine introduces 9.81.10-3% errors, while the 
random forest has 0.82.10-3% errors, working with 8 features 
as a detector. The errors, induced by the single detectors, are 
more evenly scattered between attack and non-attack samples. 
Training time of the 3-link detector, compared to the optimal 
2-link, when using 8 features takes 267.5 times longer. Testing 
time ratio between the same 2 configurations is almost 17 
times. The 2-link detector at 8 features prove to be the optimal 
detector among all tested combined binary classifiers in this 
study. 

The same combination of single classifiers through linear 
regression as 2- and 3-links classifiers, working on 8- and 10-
feature sets are tested. They give as an output 1 of 11 possible 
values – 0 for predicted non-attack samples and 1-10 – for 1 of 
10 possible attacks. The 2-link classifier at 8 and 10 features 
yields 78.23% and 96.96%, respectively, correctly classified 
samples of the total number of test samples. The 3-link 
classifier at 8 and 10 features has 78.69% and 97.04%, 
respectively, correct predictions over the test set. In the same 
time, as our previous research reveals, the optimized support 
vector machine (10 features) alone achieves 62.62% correctly 
classified samples, and an optimized neural network at 10 
features – 76.35%. The random forest correct classifications 
are 97.28%. The more accurate 3-link classifier is 2.42 times 
slower than the very close as accuracy 2-link implementation. 

Both optimal configurations of the combined detector and 
classifier could be useful in real practice. 
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