
 

 

 

Abstract—This paper investigates the statistical 

properties of the voltage unbalance factor in a three-phase 

system due to an asymmetrical three-phase load with 

uncertain parameters. The parameters of the three-phase 

load are treated as random variables with Gaussian 

distribution. Random asymmetry in the three-phase load 

results in random values of the voltage unbalance factor. 

The probability density function, the cumulative 

distribution function, the mean value and the variance of 

the voltage unbalance factor are derived in closed form 

and numerically validated. The obtained results are useful 

to provide a quantitative description of possible effects of 

asymmetry in a three-phase load such as the connection of 

a large single-phase load.  

 

Keywords—Asymmetrical three-phase loads, statistical 

analysis, voltage unbalance factor.  

I. INTRODUCTION 

HREE-phase power systems under steady-state sinusoidal 

conditions are usually analyzed by resorting to the well-

known symmetrical component transformation (SCT) [1]-[3]. 

This approach is a special case of the more general approach 

consisting in the modal analysis of circuits. Roughly speaking, 

modal analysis of circuits consists in a proper matrix 

transformation of voltage/current vectors leading to diagonal 

impedance/admittance matrices. Thus, the transformed system 

can be seen as a collection of uncoupled circuits whose 

solution can be readily evaluated. The SCT yields three 

uncoupled circuits (i.e., the positive, negative, and zero 

sequence circuits) under the fundamental assumption of a 

three-phase system with perfect structural symmetry between 

the three phases, i.e., the circuit parameters of the three phases 

(e.g., resistance, capacitance, self and mutual inductance) must 

be equal. In practical three-phase power systems, however, 

perfect symmetry of the three phases cannot be guaranteed. 

 
 

Indeed, the two main reasons leading to three-phase 

asymmetry are related to the lines and to the loads [4]-[9]. In 

fact, three-phase lines are usually transposed such that the 

three conductors can be regarded as geometrically equivalent 

along the whole length of the line. As far as the loads are 

concerned, however, the use of large single-phase loads (e.g., 

high-speed railway lines) can result in a significant asymmetry 

in a three-phase load. The lack of symmetry in a three-phase 

load results in a mutual coupling between the sequence 

circuits after the symmetrical component transformation.  

In an ideal three-phase power system the voltage source 

consists only in the positive sequence component. Therefore, 

in a symmetrical system, the negative and zero sequence 

circuits are not excited. If the symmetry assumption is not 

met, however, coupling between sequence circuits results in 

injection of current also in the negative and zero sequence 

circuit. In this process the positive sequence circuit acts as the 

source of emission, and the negative and zero sequence 

circuits represent the victims. In many cases, power systems 

consist only in the interconnection of components with three 

wires. In such case, the zero-sequence circuit is an open 

circuit. Thus, the victim of the emission is the negative 

sequence circuit only. Emission of the positive sequence 

circuit on the negative sequence circuit due to lack of system 

symmetry is called voltage unbalance emission [10]-[15].  

In practical applications it is of paramount importance to 

limit such phenomenon because it has adverse effects on both 

supply utilities and customer installations. Three-phase 

rotating machines are the major victim under unbalanced 

supply voltages. In particular, the presence of voltage 

unbalance adversely affects the operation of three-phase 

induction motors in terms of high unbalanced phase currents, 

reduced motor torque and speed, increased noise and 

vibration. Additional heat in windings leads to reduction in the 

motor efficiency, thus demanding motor de-rating [14]-[15]. 

It is important to notice that voltage unbalance emission is 

one of the interference phenomena regarded as low-frequency 

conducted emission in electromagnetic compatibility (EMC) 
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[16]-[17]. Indeed, EMC investigates electromagnetic 

phenomena starting from zero hertz. From this viewpoint, 

voltage unbalance emission is one of the main conducted low-

frequency phenomena.  

Since in many cases of practical interest the asymmetry 

level in a three-phase load can be regarded as a small 

perturbation with respect to the ideal symmetrical condition, in 

this paper a weak-coupling approach between sequence 

circuits is proposed [18]. Analytical investigation of the 

problem provides the conditions to be met such that weak-

coupling can be assumed. Thus, in case of weak coupling the 

emission from the positive to the negative sequence circuit can 

be readily evaluated through a simple and approximate 

equivalent circuit consisting in a current-controlled voltage 

source depending on the load asymmetry. Then, the 

approximate equivalent circuit is used to derive the statistical 

properties of the voltage unbalance factor due to an 

asymmetrical three-phase load with uncertain parameters. 

Indeed, by treating the load parameters as Gaussian random 

variables the statistics of the voltage unbalance factor are 

derived in closed form and numerically validated. 

The paper is organized as follows. In Section II the 

symmetrical component transformation is recalled. In Section 

III, the circuit representation of load asymmetry under the 

assumption of weak coupling between positive and negative 

sequence circuits is derived, and an approximate expression 

for the voltage unbalance factor is provided. In Section IV the 

statistical analysis of the voltage unbalance factor is 

performed by deriving its probability density function, 

cumulative distribution function, mean value and variance. 

The obtained analytical results are numerically validated in 

Section V. Finally, concluding remarks are reported in Section 

VI. 

II. BACKGROUND: THE SYMMETRICAL COMPONENT 

TRANSFORMATION 

The conventional approach for the steady-state analysis of 

symmetrical three-phase power systems foresees the use of the 

Symmetrical Component Transformation (SCT) in the phasor 

domain. The main advantage of this approach consists in 

obtaining decoupled equations even if the three phases are 

coupled in the original variables. This approach is a special 

case of the more general modal analysis of coupled circuits. 

The three uncoupled modal circuits, called sequence circuits 

(i.e., positive, negative, and zero sequence circuits), can be 

readily solved in the sequence domain and the original 

variables can be recovered by inverse transformation.  

The transformation matrix, in its rational form, is defined as 
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and 𝛼2 = 𝛼∗, where asterisk denotes complex conjugate. The 

transformation matrix (1) is a Hermitian matrix, i.e., 𝐒−1 =

𝐒𝑇∗. 

The SCT when applied to phasor voltages provides 
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where 𝑉𝑝, 𝑉𝑛, and 𝑉0 are the positive, negative, and zero 

sequence voltages. Of course, the same transformation applies 

to phasor currents.  

Symmetrical three-phase passive components (i.e., lines and 

loads) can be described in terms of an impedance matrix with 

the following structure 
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By defining the column vectors 
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the transformed current/voltage relationship for a symmetrical 

passive component can be written 
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and 

 𝑍𝑝 = 𝑍𝑛 = 𝑍 − 𝑍𝑚 (8) 

 

 𝑍0 = 𝑍 + 2𝑍𝑚 (9) 

 

The diagonal form of the sequence impedance matrix (7) 

leads to the above-mentioned uncoupled sequence circuits 

when the transformation is applied to the whole three-phase 

system.  

III. ASYMMETRICAL LOADS: WEAK COUPLING ANALYSIS 

In many cases of practical interest, the equivalent load of a 

three-phase power system can be modelled as three uncoupled 

impedances 𝑍𝑎, 𝑍𝑏, and 𝑍𝑐. The power system is designed 

such that the three impedances are equal, but in practice a 

deviation from the nominal impedance level cannot be 

avoided.  

By denoting as 𝑍 the nominal value of the load impedances, 
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the three load impedances can be written in terms of the 

arbitrary deviation (i.e., no symmetrical deviations are 

required) with respect to such nominal value: 

 

 𝑍𝑎 = 𝑍 + 𝛿𝑍𝑎,   𝑍𝑏 = 𝑍 + 𝛿𝑍𝑏,   𝑍𝑐 = 𝑍 + 𝛿𝑍𝑐 (10) 

 

By using the SCT defined in Section II, and by considering 

only the positive and negative sequence circuits (i.e., the 

common condition of a power system with three wires is 

considered), the voltage/current relationship (6) can be written 

as: 

 [
𝑉𝑝

𝑉𝑛
] = 𝐙𝑠 𝑙𝑜𝑎𝑑 [

𝐼𝑝

𝐼𝑛
] = [

𝑍 𝛿𝑍𝑛

𝛿𝑍𝑝 𝑍
] [

𝐼𝑝

𝐼𝑛
] (11) 

 

where 

 𝛿𝑍𝑝 = (𝛿𝑍𝑎 + 𝛼𝛿𝑍𝑏 + 𝛼2𝛿𝑍𝑐) 3⁄  (12) 

 

 𝛿𝑍𝑛 = (𝛿𝑍𝑎 + 𝛼2𝛿𝑍𝑏 + 𝛼𝛿𝑍𝑐) 3⁄  (13) 

 

Notice that 𝛿𝑍𝑝 and 𝛿𝑍𝑛 are defined by expressions similar 

to 𝑉𝑝 and 𝑉𝑛 in (3), respectively (i.e., with 1 3⁄  instead of 

1 √3⁄  as a multiplicative factor).  

Relationships (12)-(13) provide the coupling coefficients 

between the positive and negative sequence circuits due to an 

asymmetrical three-phase load. The remaining parts of the 

sequence circuits consist in the same line impedance 𝑍𝑙𝑖𝑛𝑒  

(since from (8) the positive and negative-sequence line 

impedances are equal), and the positive/negative components 

𝐸𝑝 and 𝐸𝑛 of the three-phase source (see Fig. 1).  

Voltage unbalance emission of the load consists in the 

voltage 𝑉𝑛 in Fig. 1 due to the coupling of the negative 

sequence circuit with the positive sequence circuit. A rigorous 

solution of the circuit in Fig. 1 can be obtained by solving a 

coupled problem. An approximate and simpler solution based 

on a weak coupling assumption, however, would be 

interesting for engineering applications. Indeed, the 

approximate procedure outlined in this paper can be readily 

extended to the case of a power system with more complicated 

structure and including several asymmetrical loads.  

The problem in Fig. 1 can be seen as an interference 

problem where the source circuit consists in the positive 

sequence circuit, and the victim circuit consists in the negative 

sequence circuit. Assuming weak coupling means that the 

positive sequence current is not affected by the negative 

sequence circuit: 

 𝐼𝑝 ≅
𝐸𝑝

𝑍𝑙𝑖𝑛𝑒+𝑍
 (14) 

 
Figure 1. Coupling of the positive sequence and negative sequence 

circuits due to an asymmetrical three-phase load. 

 
Figure 2. Approximate circuit representation of the impact of the 

positive sequence circuit on the negative sequence circuit, based on 

the weak coupling assumption. 

 

The rigorous solution for 𝐼𝑝 in Fig. 1, however, is given by: 

 

 𝐼𝑝 =
𝐸𝑝−

𝛿𝑍𝑛
𝑍+𝑍𝑙𝑖𝑛𝑒

𝐸𝑛

𝑍+𝑍𝑙𝑖𝑛𝑒−
𝛿𝑍𝑝𝛿𝑍𝑛

𝑍+𝑍𝑙𝑖𝑛𝑒

 (15) 

 

By comparing (14) and (15) we obtain the conditions for 

weak coupling assumption: 

 

 |
𝛿𝑍𝑛

𝑍+𝑍𝑙𝑖𝑛𝑒
𝐸𝑛| ≪ |𝐸𝑝| (16) 

 

 |
𝛿𝑍𝑝𝛿𝑍𝑛

(𝑍+𝑍𝑙𝑖𝑛𝑒)2| ≪ 1 (17) 

 

The constraint (16) is usually met since in most of practical 

cases the source is such that |𝐸𝑛| ≪ |𝐸𝑝|. The constraint (17) 

should be checked, but it is reasonably expected that it is true 

in most of the cases where impedance deviations are small. 

However, when the three-phase load shows a large asymmetry 

(e.g., the case of a large single-phase load) the constraint (17) 

could be critical.  

It is interesting to notice that even in the case of large 

impedance deviations, if such deviations are equal (i.e., 𝛿𝑍𝑎 =
 𝛿𝑍𝑏 =  𝛿𝑍𝑐) then 𝛿𝑍𝑝 = 𝛿𝑍𝑛 = 0, which means that (17) is 

met. Moreover, if such deviations show a three-phase 

symmetry (i.e., 𝛿𝑍𝑎 , 𝛿𝑍𝑏 , 𝛿𝑍𝑐 with equal magnitude and 2𝜋 3⁄  

relative phase displacement) then 𝛿𝑍𝑝 = 0 or 𝛿𝑍𝑛 = 0. 

In case of weak coupling, the positive sequence circuit can 

be solved by neglecting circuit coupling (i.e., by using (14)). 

Then, according to (11), the impact on the negative sequence 

circuit can be represented by a current-controlled voltage 

source 𝛿𝑍𝑝𝐼𝑝 (see Fig. 2). 

Finally, according to Figs. 1 and 2, the approximate 

expression for the Voltage Unbalance Factor (VUF) based on 

the weak coupling assumption can be easily derived [18]: 

 

 𝑉𝑈𝐹 = |
𝑉𝑛

𝑉𝑝
| ≅ |

𝛿𝑍𝑝

𝑍
∙

𝑍𝑙𝑖𝑛𝑒

𝑍+𝑍𝑙𝑖𝑛𝑒
| (18) 

IV. STATISTICAL ANALYSIS 

Asymmetrical loads often have unpredictable nature, i.e., 

they are characterized by parameters affected by uncertainty. 

Therefore, it makes sense to investigate how the load 

uncertainties propagate to the VUF defined in (18).  

A thorough statistical analysis foresees assigning a 

probabilistic distribution to the load deviations 𝛿𝑍𝑎, 𝛿𝑍𝑏 , 𝛿𝑍𝑐, 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2022.16.92 Volume 16, 2022

E-ISSN: 1998-4464 749



 

 

(i.e., by treating them as random variables) and deriving the 

corresponding statistical properties of VUF in (18) where 𝛿𝑍𝑝 

is a function of 𝛿𝑍𝑎, 𝛿𝑍𝑏 , 𝛿𝑍𝑐 according to (12).  

To this aim, it is useful to rewrite (18) by putting into 

evidence the random factor |𝛿𝑍𝑝| normalized by the nominal 

impedance Z: 

 

 𝑉𝑈𝐹 = 𝐾 ∙ |𝛿𝑍𝑝/𝑍| (19) 

 

where: 

 

 𝐾 = |
𝑍𝑙𝑖𝑛𝑒

𝑍+𝑍𝑙𝑖𝑛𝑒
| = |

1

1+𝑍 𝑍𝑙𝑖𝑛𝑒⁄
| (20) 

 

is a deterministic factor. 

According to (12), |𝛿𝑍𝑝| is a function of the three random 

variables 𝛿𝑍𝑎, 𝛿𝑍𝑏 , 𝛿𝑍𝑐. In this paper we consider the simpler 

case of only one asymmetrical load, i.e., only one random 

variable among 𝛿𝑍𝑎, 𝛿𝑍𝑏 , 𝛿𝑍𝑐. This choice allows putting into 

evidence the effects of one single-phase load deviating from 

its nominal value Z. Thus, let us treat 𝛿𝑍𝑎 as a random 

variable, and 𝛿𝑍𝑏 = 𝛿𝑍𝑐 = 0. We obtain: 

 

 |
𝛿𝑍𝑝

𝑍
| =

1

3
√(

𝛿𝑅𝑎

|𝑍|
)

2

+ (
𝛿𝑋𝑎

|𝑍|
)

2

 (21) 

 

Notice that a similar expression would be obtained by 

treating either 𝛿𝑍𝑏 or 𝛿𝑍𝑐 as random variable since |𝛼| =
|𝛼2| = 1. 

For the sake of simplicity, we can rewrite (21) as: 

 

 𝑤 =
1

3
√𝑥2 + 𝑦2  (22) 

 

with 

 

 𝑥 =
𝛿𝑅𝑎

|𝑍|
,   𝑦 =

𝛿𝑋𝑎

|𝑍|
,   𝑤 = |

𝛿𝑍𝑝

𝑍
| (23) 

 

Let us assume x and y as random variables with Gaussian 

distribution: 

 

 𝑥~𝑁(𝜇𝑥; 𝜎2),   𝑦~𝑁(𝜇𝑦; 𝜎2) (24) 

 

With the assumption (24), the random variable w in (22) has 

a Rice distribution whose probability density function (PDF) 

is given by [19]-[21]: 

 𝑓𝑤(𝑤) =
9𝑤

𝜎2 𝑒𝑥𝑝 (−
9𝑤2+𝑎2

2𝜎2 ) 𝐼0 (
3𝑤𝑎

𝜎2 ) (25) 

 

where: 

 

 𝑎 = √𝜇𝑥
2 + 𝜇𝑦

2 (26) 

 

and 𝐼0 is the zero-order modified Bessel function of the first 

kind. 

The PDF of VUF in (19) can be obtained by resorting to the 

theorem on transformation of random variables. By denoting 

as v the random variable VUF we obtain: 

 

 𝑓𝑣(𝑣) =
1

𝐾
𝑓𝑤 (

𝑣

𝐾
) (27) 

 

Similarly, the cumulative distribution function (CDF) of the 

Rice random variable w is given by: 

 

 𝐹𝑤(𝑤) = 1 − 𝑄1 (
𝑎

𝜎
,

3𝑤

𝜎
) (28) 

 

where 𝑄1 is the first-order Marcum Q-function. 

Therefore, the CDF of v (i.e., the CDF of the VUF) is given 

by: 

 

 𝐹𝑣(𝑣) = 𝐹𝑤 (
𝑣

𝐾
) (29) 

 

The mean value of (19) can be obtained by multiplying by 

K the mean value of the Rice random variable w: 

 

 𝜇𝑣 =
𝐾

3
√

𝜋

2
𝜎 ∙ 𝐿1 2⁄ (−

𝑎2

2𝜎2) (30) 

 

where 𝐿1 2⁄  is a Laguerre polynomial. 

The variance of (19) can be obtained by multiplying by 𝐾2 

the variance of the Rice random variable w: 

 

 𝜎𝑣
2 =

𝐾2

9
[2𝜎2 + 𝑎2 −

𝜋

2
𝜎2𝐿1 2⁄

2 (−
𝑎2

2𝜎2)] (31) 

V. NUMERICAL VALIDATION 

The statistical properties (27), (29)-(31) of the approximate 

expression (18) based on the weak coupling assumptions (16)-

(17) were validated by means of the numerical simulation of a 

simple radial network consisting in a 12.47 kV-60 Hz three-

phase ideal source with only positive sequence component, a 

3.22 km symmetrical line, and an asymmetrical star-connected 

load. The line was characterized by the following impedance 

matrix [17]: 

 

�̃� = [

0.2494 + 𝑗0.8748 0.0592 + 𝑗0.4985 0.0592 + 𝑗0.4985
0.0592 + 𝑗0.4985 0.2494 + 𝑗0.8748 0.0592 + 𝑗0.4985
0.0592 + 𝑗0.4985 0.0592 + 𝑗0.4985 0.2494 + 𝑗0.8748

] [
Ω

𝑘𝑚
] 

(32) 

 

whereas the nominal impedance of the load was 𝑍 = 10 +
𝑗10 Ω.  

According to (23)-(24), the deviation 𝛿𝑍𝑎 of the load 𝑍𝑎 

with respect to the nominal value Z was described by the 

normalized Gaussian random variables x and y. For the sake of 

simplicity, it was assumed 𝜇𝑥 = 𝜇𝑦 = 𝜇 where 𝜇 ranges from 

0 to 0.1, and 𝜎 was set to 0.01. A repeated-run analysis was 

performed to obtain the numerical estimates of the PDF, CDF, 

mean value and standard deviation of the VUF given by the 

exact solution of the coupled circuit in Fig. 1, i.e.,  
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 𝑉𝑈𝐹 = |
𝑉𝑛

𝑉𝑝
| = |

−𝑍𝑙𝑖𝑛𝑒𝐼𝑛

𝐸𝑝−𝑍𝑙𝑖𝑛𝑒𝐼𝑝
| (33) 

 

where 𝐼𝑝 is given by (15) and 𝐼𝑛 is evaluated accordingly. 

Such numerical estimates are compared with the 

corresponding approximate analytical results (27) and (29)-

(31).  

In Fig. 3 the numerical and analytical PDFs (dotted and 

solid lines, respectively) are shown for six different values of 

𝜇 , i.e., 𝜇 = 0, 0.02, 0.04, 0.06, 0.08, 0.1. By increasing 𝜇, 

i.e., the load asymmetry, larger values of VUF are obtained. 

Numerical and approximate analytical PDFs (given by (27)) 

are clearly in good agreement. 

Fig. 4 shows the behavior of the numerical and analytical 

CDFs for the same three values of 𝜇 considered in Fig. 3. Also 

in this case the analytical curves (given by (29)) are in good 

agreement with numerical results. 

Figs. 5 and 6 correspond to Figs. 3 and 4, respectively, by 

assuming a larger value of the load standard deviation, i.e., 

𝜎 = 0.02 instead of 0.01.  

Figs. 7 and 8 correspond to Figs. 3 and 4 by assuming 𝜎 =
0.04. Clearly, by increasing the load standard deviation both 

the mean value and the standard deviation of VUF are 

affected.  

Fig. 9 shows the behavior of the VUF mean value as a 

function of the mean value 𝜇 of the load asymmetry. 

Numerical results (dashed lines) are compared with 

approximate analytical results given by (30). Three different 

values for the load standard deviation were considered, i.e., 

𝜎 = 0.01, 𝜎 = 0.02, 𝜎 = 0.04. The curves are related to the 

PDFs shown in Figs. 3, 5, and 7.  

Fig. 10 shows the behavior of the VUF standard deviation 

as a function of the mean value 𝜇 of the load asymmetry as in 

Fig. 9. Numerical results (dashed lines) are compared with 

approximate analytical results given by the square root of (31). 

Three different values for the load standard deviation were 

considered, i.e., 𝜎 = 0.01, 𝜎 = 0.02, 𝜎 = 0.04. The curves 

are related to the PDFs shown in Figs. 3, 5, and 7. 

 

 

Figure 3. Probability density function of the voltage unbalance factor 

for different values of the load asymmetry mean value μ, and for load 

asymmetry standard deviation 𝜎 = 0.01. Analytical results (solid 

lines) are compared with numerical simulations (dotted lines). 

 

Figure 4. Cumulative distribution function of the voltage unbalance 

factor for different values of the load asymmetry mean value μ, and 

for load asymmetry standard deviation 𝜎 = 0.01. Analytical results 

(solid lines) are compared with numerical simulations (dotted lines). 

 

 

Figure 5. Probability density function of the voltage unbalance factor 

for different values of the load asymmetry mean value μ, and for load 

asymmetry standard deviation 𝜎 = 0.02. Analytical results (solid 

lines) are compared with numerical simulations (dotted lines). 

 

 

Figure 6. Cumulative distribution function of the voltage unbalance 

factor for different values of the load asymmetry mean value μ, and 

for load asymmetry standard deviation 𝜎 = 0.02. Analytical results 

(solid lines) are compared with numerical simulations (dotted lines). 
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Figure 7. Probability density function of the voltage unbalance factor 

for different values of the load asymmetry mean value μ, and for load 

asymmetry standard deviation 𝜎 = 0.04. Analytical results (solid 

lines) are compared with numerical simulations (dotted lines). 

 

 

Figure 8. Cumulative distribution function of the voltage unbalance 

factor for different values of the load asymmetry mean value μ, and 

for load asymmetry standard deviation 𝜎 = 0.04. Analytical results 

(solid lines) are compared with numerical simulations (dotted lines). 

 

 

Figure 9. Mean value of the voltage unbalance factor as a function of 

the load asymmetry mean value μ, for different values of the load 

asymmetry standard deviation 𝜎. Analytical results (solid lines) are 

compared with numerical simulations (dotted lines). 

 

 

Figure 10. Standard deviation of the voltage unbalance factor as a 

function of the load asymmetry mean value μ, for different values of 

the load asymmetry standard deviation 𝜎. Analytical results (solid 

lines) are compared with numerical simulations (dotted lines). 

VI. CONCLUSION 

An approximate model for the voltage unbalance emission 

based on the weak coupling assumption for the positive and 

negative sequence circuits in a three-phase power system with 

asymmetrical load has been derived. It was shown that under 

proper hypothesis a load asymmetry can be represented as a 

current-controlled voltage source in the negative sequence 

circuit.  

The statistics of the voltage unbalance factor have been 

derived in closed form by assuming Gaussian distribution of 

the asymmetrical load parameters. In particular, the PDF, 

CDF, mean value and variance of the VUF have been derived 

in closed form as functions of the uncertainty in one 

impedance in a three-phase load.  

Future work will be devoted to extend the proposed 

approach to the more general case where all the load 

parameters are treated as random variables. Moreover, the 

analysis will be extended to the case where more than one 

three-phase load is asymmetrical. In that case, the statistical 

approach should allow a proper quantitative description in 

terms of superposition of voltage unbalance emissions.  
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