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Abstract- Image inpainting is an essential task
in image restoration field. Currently, most meth-
ods for image inpainting employ the encoder-
decoder framework to restore degraded areas,
and this often results in synthesizing wrong se-
mantic structure due to the lack of guiding from
effective prior information. In this paper, we pro-
pose a structural knowledge-guided framework
for image inpainting, which predicts both the
edge map and corrupted content at the same
time. Our model captures structural knowledge
in the structure estimation branch to guide the
content inference in the latent feature space.
By employing self-attention mechanism to aggre-
gate known information and inferred structural
knowledge, our model is able to synthesize more
semantically reasonable content for the corrupted
areas. Extensive experiments on three bench-
mark datasets demonstrate that our method out-
performs most state-of-the-art methods for image
inpainting in terms of the evaluation of both vi-
sual quality and quantitative metrics.

Keywords- Image inpainting, image restora-
tion, feature representation, deep learning.

I. Introduction

Image inpainting gradually plays an essential role in
the computer vision community due to its wide applica-
tions, including old image restoration[1], image edit[2],
and so on. Main goal of image inpainting is to complete
missing parts of image by inferring from known informa-
tion. The crux of image inpainting stems from the dif-
ficulty of synthesizing plausible semantic content for the
missing area. Thus, image inpainting is still extremely
challenging in image restoration tasks.

Traditional methods for image inpainting mostly
adopt exemplar-based strategy, and fill in content by
diffusing pixels[3, 4] or similar patches replacement[5,
6]. Such traditional methods for image inpainting can
well deal with corrupted images with repetitive textures
due to the similarity of most patches. However, they
fail to synthesize reasonable results while coping with
complex semantic patterns, and usually fill in unreason-
able structure or undesired artifacts, which decreases the

image quality. This mainly because the content are re-
constructed without high-level guidance, and the lack of
semantic understanding limits the effectiveness of tradi-
tional methods for image inpainting.

Recently, image inpainting methods gradually make
notable progress because of the fast develop of CNN-
based deep generative models, such as the encoder-
decoder based framework[7] and generative adversarial
network[8]. By performing supervision on final output
of deep model, their results have higher quality than tra-
ditional methods due to the excellent ability of distribu-
tion learning by deep models. To further enhance the
restoration performance, some researches[9-12] employ
attention mechanism[13] in deep models to strengthen
the effectiveness of feature extraction. By weighting con-
fidence for each pixel, deep models are able to cope with
irregular corruption. Despite the quality of restoration
results is improved, such methods fail to handle large cor-
ruption, and generate color discrepancy and undesired
noise.

To solve above problems, some researches attempt
to employ specific prior for improving performance of
restoration. A prominent way[14, 15] is to employ high-
frequency information, and obtain more reliable seman-
tic boundary. In detail, it first predicts the edge map of
restored images, and then puts the edge map and cor-
rupted image together into the deep model. Although it
can enhance the confidence of boundary information in
some degree, the error of edge prediction might decrease
the quality of final restored images. In addition, only
leveraging the edge map might contribute little to the
restoration due to the lack of explicit guide of feature in-
ference from structural information. Thus, it’s essential
to infer corrupted content by effective structural knowl-
edge.

In this paper, we propose a structural knowledge-
guided feature inference network for image inpainting,
and it is able to synthesize more reasonable content for
the corrupted area. Specifically, we propose the struc-
tural knowledge-guided attention module to guide the
content inference from structural knowledge in the latent
feature space. The overall contribution of our method is
as follows:

• We propose a novel framework for image inpainting,
which employs the structural knowledge as guidance
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Fig. 1: Given an corrupted image, our SK-FIN infers the corrupted content by the cooperation of two types of
feature inference: 1) pixel-level image reconstruction from the known pixels of the input image, and 2) structural
reconstruction of the high-frequency constituents of the corrupted area. Our SK-FIN distills the structural knowledge
from the branch of edge prediction. The learned structural knowledge are further used for pixel-level reconstruction
by our designed Structural Knowledge-Guided(SKG) attention mechanism. Consequently, our SK-FIN is able to
restore plausible image even dealing with large corruption ratio.

for inferring corrupted content. In addition, by em-
ploy the adversarial learning strategy with spectral
normalization based discriminator, our method is
able to synthesize more realistic content.

• We propose the structural knowledge-guided atten-
tion mechanism to facilitate restoration by aggregat-
ing structural information in latent feature space,
and thus the model is able to generate more reason-
able semantic boundary.

• Experiments on three benchmark datasets for im-
age inpainting, including Paris Street View, CelebA-
HQ, and Places2, demonstrate the effectiveness of
our proposed method on both visual quality and
quantitative metrics.

II. Related Work

There are a large mount of researches on image in-
painting, and we select the most related and typical
methods for reviewing. Methods for image inapainting
can be thoroughly divided into two main types, non-
learning based methods and learning based methods.

Traditional methods. Traditional methods for im-
age inpainting include two main strategies, diffusion-
based methods[3, 4, 16] and exemplar-based methods[5,
6]. The Diffusion-based methods expand neighboring
pixels to fill in missing area. Some researches[16] attempt
to use the isophote direction field to guide the pixel dif-
fusion process. Then, Levin et al.[17] employ statistic
histograms of local information to select the most similar
pixels for inpainting damaged area. Such methods per-
form well on image smoothness and images with repet-
itive textures. However, the diffusion-based methods is
only able to deal with images with small degradation

such as scratches. In contrast, the patch-based meth-
ods can enhance the performance of image inpainting by
computing the similarity for selecting the most proper
patch and replacing the missing area. Efros et al.[18]
first attempt to paste a image patch into a target image.
Bertalmio et al.[19] propose patch search to find the most
proper image patch. To accelerate the search efficiency,
Barnes et al. propose the PatchMatch[20] methods for
real-time image inpainting. However, the patch-based
methods fail to work when the missing areas are larger
due to the lack of semantic understanding for known con-
tent.

Deep learning based methods. With the fast de-
velopment of deep learning[29, 39], CNN-based methods
are able to extract semantic features to infer the struc-
ture of missing areas. And it facilitates to improve the
performance of medical image processing[38]. The con-
text encoder[21] is the first deep learning based method
for image inpainting, which employs the encoder-decoder
framework to construct the structure of missing area.
Later, Iizuka et al.[22] leverage the dilated convolution
to enlarge the receptive fields, and reconstruct the re-
stored images. Liu et al.[9] propose the partial convo-
lution, which normalizes the weights of convolutions, to
infer missing pixels from the outside to the inside. For
the excellent feature representation ability of attention
mechanism, Yu et al.[10] propose the contextual atten-
tion to consider the consistency of known area and miss-
ing area. Then, they employ the attention mechanism to
normalize deep features, and leverage the spectral nor-
malization in discriminator to stabilize the adversarial
learning.

Lately, some researches attempt to employ priors
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Fig. 2: The structure of our proposed structural knowl-
edge guided self-attention mechanism.

for feature reasoning. Yeh et al.[23] trains a gener-
ative model as generative prior for image inpainting.
By employing the variation auto-encoder[24], some re-
searches[25] estimate the distribution of the complete
image from known content. However, these methods suf-
fer from the limitation of bluriness and undesired arti-
facts. To synthesize reasonable structure, some methods
predict the structure information as structural prior to
facilitate image inpainting. Nazeri et al.[14] first esti-
mate the edge map, and then directly combine the edge
map and input image together to reason the missing ar-
eas. Xiong et al.[26] propose a framework which infers
the foreground objects of degraded images. Although
this category of methods benefit from handcrafted pri-
ors, they cannot synthesize reasonable structure when
the degradation areas are large. Thus, it’s necessary to
employ the structural information to guide the restora-
tion process in the latent feature space to solve this prob-
lem.

III. Method

In this section, we introduce the architecture of the
proposed structural knowledge-guided feature inference
network for image inpainting. To begin with, we elab-
orate the main components in our framework. Then,
we explain how the structural knowledge-guided atten-
tion mechanism leverages high-frequency information to
guide the restoration process. Furthermore, we enumer-
ate the loss functions during model training. Finally, we
introduce the implementation details in our experiments.

A. Main Framework
Our proposed SK-FIN is a cooperative network,

which includes two parallel branches in the decoder and
infers the corrupted area by the guidance of structural
information. As illustrated in Figure 1, the encoder E
of our SK-FIN encodes the corrupted image into latent
embeddings. In the structural estimation branch, we es-
tablish a simple decoder by stacking plain convolution
layers due to the sparsity of high-frequency information.
Then, by distilling the estimated structural knowledge of

the corrupted area, the pixel-level reconstruction branch
aggregates the known information and structural knowl-
edge to accurately infer the content of corrupted area.

Formally, given an corrupted image I, our SK-FIN
first encodes the known area into prior embeddings e by
stacked encoder blocks:

e =

Ne∑
i=1

Ei(I), (1)

where Ne is the number of encoder blocks. To be specific,
the encoder block of SK-FIN follows the structure of
residual learning[35] to extract multi-level features from
the input image:

Fi+1 = f(Fi) + Fi, (2)

where Fi is the input feature of the i-th encoder block,
and f denotes the convolution and ReLU layers. In ad-
dition, we downsample the size of features by stride-2
convolution.

Next, the SK-FIN separates the embeddings into two
parallel branches, the structural knowledge estimation
branch and pixel-level reconstruction branch. To ex-
tract the high-frequency information of input features,
we employ the high-pass filter[37] to obtain the known
structure Fhigh:

Fhigh = Fhigh-pass(e), (3)

Due to the sparsity of structural knowledge, we stack
plain convolution layers as decoder for estimating the
edge map:

E =

Nd∑
j=1

Mj(Fhigh), (4)

where E is the predicted edge map, Nd is the number of
decoder blocks, and Mj denotes the j-th decoder block
in our SK-FIN.

B. Structure Knowledge Guided Attention
Differing from most methods that employ predicted

edge maps to guide the pixel-level reconstruction, our
SK-FIN proposes the structural knowledge guided(SKG)
attention mechanism to aggregate the extracted features
from input image and estimated structural knowledge.
As illustrated in Figure 2, the SKG attention module
captures feature correspondence between the known area
and predicted structural information.

Following the transformer model[13], we crop the
structural features Fedge into patches, and obtain the de-
pendencies among patches by performing self-attention.
Thus, the corrupted area can be reconstructed by the
guidance of the predicted structural information in the
latent feature space. In the pixel-level reconstruction
phase, the SKG attention module first leverages different
convolution layers to obtain the feature representations
of two branches respectively:

Q,K,V = f1(Fpixel), f2(Fpixel), f3(Fedge), (5)
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Fig. 3: Visualization of restoration results from four methods for image inpainting on seven randomly selected test
images. Our SK-FIN is able to restore more reasonable results from corrupted images than most state-of-the-art
methods.

where the Fpixel denotes the features from the pixel-level
reconstruction branch, the Fedge is the features from the
structural estimation branch, and f is the convolution
layer. Then, we leverage the extracted feature represen-
tations to perform the multi-head self-attention(MSA)
for capturing the long-term semantic dependencies in the

image:

Fout = LN(MSA(Q,K,V)), (6)

where LN is the layer normalization[27] module, and
Fout denotes the output features of SKG attention mech-
anism. Indeed, the decoder block of the pixel-level
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Table 1: Quantitative comparison of the state-of-the-art methods for image inpainting and our SK-FIN on the Paris
StreetView [30], CelebA[31], and Places[32] datasets. Best results are highlighted in bold. ↑ notes that higher is
better, but ↓ notes lower is better.

Method
Paris StreetView CelebA Places2

20-30% 30-40% 40-50% 20-30% 30-40% 40-50% 20-30% 30-40% 40-50%

P
S

N
R
↑

PConv[9] 23.34 21.37 20.73 25.91 23.42 21.01 23.03 20.99 19.21
GConv[11] 23.99 21.86 19.79 25.52 23.19 20.64 23.00 20.94 18.68
EdgeConnect[14] 24.91 23.35 20.23 25.97 23.62 20.19 22.99 20.86 18.97
CA[10] 22.96 21.32 19.26 26.92 25.01 21.07 23.99 21.96 19.48
LBAM[33] 25.04 23.12 20.76 25.95 23.91 21.73 23.04 21.55 19.36
MEDFE[34] 24.32 22.25 19.97 23.89 22.12 19.96 23.02 21.29 18.31
Lizuka et al.[22] 24.69 22.43 21.02 25.76 24.32 21.24 23.33 21.52 19.39
SK-FIN (ours) 25.69 23.49 21.17 27.03 25.51 22.70 24.93 22.91 20.60

S
S

IM
↑

PConv[9] 0.792 0.708 0.625 0.844 0.779 0.705 0.769 0.688 0.609
GConv[11] 0.799 0.716 0.622 0.841 0.772 0.673 0.785 0.722 0.636
EdgeConnect[14] 0.819 0.737 0.646 0.855 0.784 0.682 0.797 0.714 0.643
CA[10] 0.821 0.745 0.643 0.889 0.814 0.713 0.812 0.734 0.649
LBAM[33] 0.807 0.723 0.648 0.855 0.789 0.706 0.797 0.712 0.633
MEDFE[34] 0.809 0.711 0.607 0.802 0.747 0.656 0.801 0.729 0.648
Lizuka et al.[22] 0.809 0.725 0.647 0.846 0.813 0.722 0.813 0.729 0.649
SK-FIN (ours) 0.831 0.761 0.678 0.889 0.821 0.733 0.821 0.736 0.661

branch also employs the residual block as core unit to
reconstruct the image, and upsamples feature maps by
bilinear interpolation:

Î =

Nd∑
i

Di(Fout), (7)

where Nd is the number of decoder layers, and Î is the
restored image.

C. Loss Functions for Supervision Learning
We optimize the parameters of our SK-FIN in an

end-to-end manner supervised by three types of loss func-
tions.
Edge Reconstruction Loss. To accurately estimate
the structural knowledge of corrupted area, we employ
L1 distance to optimize the predicted edge map Ê and
the groundtruth:

Ledge = ||Egt − Ê||1. (8)

In detail, we obtain the groundtruth of edge map by the
canny algorithm of edge detection[28].
Content Loss. Our content loss includes two main
parts, the L1 distance of pixel-wise reconstruction Lpixel

and the perceptual loss Lperc:

Lcontent = Lpixel + Lperc. (9)

The pixel-wise loss calculates the L1 distance between
restored image and groundtruth image in pixel level, and
it is defined as follows:

Lpixel = ||Igt − Î||1. (10)

The perceptual loss[36] facilitate the deep model to
learn semantic consistency between restored image and

groundtruth image, and it is defined as follows:

Lperc(̂I, Igt) =
L∑

l=1

‖f lvgg(̂I)− f lvgg(Igt)‖1, (11)

where f lvgg(̂I) and f lvgg(Igt) are the feature maps ex-
tracted by the l-th layer of pre-trained VGG-19[29].
Adversarial Loss. To improve the quality of synthe-
sized content, we employ the adversarial learning strat-
egy[8] by an additional discriminator:

Ladv = −EIvPSK-FIN [D(G(I))], (12)

where G and D are the SK-FIN and discriminator re-
spectively. In this way, the distributions of restored im-
ages and groundtruth images are similar as much as pos-
sible.

In sum, the whole loss functions of our SK-FIN are
defined as follows:

L = λ1Ledge + λ2Lcontent + λ3Ladv, (13)

where λ1, λ2, and λ3 are hyper-parameters to balance
between different losses. In our experiments, we empiri-
cally set λ1=1, λ2=0.1, and λ3=0.01.

IV. Experiments

In this section, we conduct extensive experiments to
evaluate the performance of our proposed SK-FIN. First,
we elaborate the datasets to evaluate the performance of
different methods for image inpainting. Then, we in-
troduce the implementation details while training our
model. Next, we perform quantitative and qualitative
comparisons with the state-of-the-art methods for image
inpainting, and analyzes the results. Finally, we conduct
ablation study to check the effectiveness of each compo-
nent of our SK-FIN.
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Table 2: Performance comparison of four ablation vari-
ants of our SK-FIN with 30%-40% irregular corruption
on two benchmark datasets in terms of PSNR and SSIM.

Dataset Metrics w/o Edge w/o MSA w/o Ladv SK-FIN

Paris Street View[30]
PSNR 19.97 21.09 22.06 23.49
SSIM 0.730 0.749 0.757 0.761

CelebA[31]
PSNR 22.13 23.22 24.17 25.51
SSIM 0.793 0.806 0.816 0.821

A. Datasets

Three benchmark datasets are employed to evaluate
the performance of different methods for image inpaint-
ing. Paris Street View[30], which is captured from
the streetview of Paris includes altogether 14900 train-
ing images, and 100 test images. CelebA[31], which in-
cludes 30000 images of human faces. We random select
29000 images as training set and 1000 images as test set.
Places2[32], which includes more than 2,000,000 images
of different scenes. We random select three scenes al-
together 120000 images. And we random select 117000
images as training set and 3000 images as test set. Fur-
thermore, we evaluate the results of various methods by
the PSNR and SSIM.

B. Implementation Details

We conduct our experiments under the PyTorch. We
first resize the training data into 284×284, and then ran-
dom crop into 256×256. We employ the Adam to op-
timize the parameters of our SK-FIN. In addition, the
learning rate is decreasing from 5e-4 to 1e-4 during alto-
gether 100 epochs. All experiments are conducted with
2 2080ti GPUs. The batchsize is 4, and augmentations
are employed during training, including random flipping,
resizing, and rotation.

C. Results Analysis

In this section, we analyze the results of different
methods in the experiments for image inpainting to
demonstrate the effectiveness of our proposed SK-FIN.

The Table 1 lists the quantitative comparison of our
SK-FIN and other state-of-the-art methods[9, 10, 11,
14, 22, 33, 34] for image inpainting. In terms of PSNR,
our method outperforms all competing methods for a
large margin, even if the corruption ratio is high. In
terms of SSIM metric, our SK-FIN is able to obtain
higher performance than most state-of-the-art methods
for image inpainting when the corruption area becomes
larger. For the CelebA dataset, the CA[10] employs con-
textual attention in the spatial feature to obtain more
accurate content inference, but our SK-FIN still outper-
forms CA’s performance in large corruption ratio due to
the guidance of structural knowledge in the edge map
estimation branch.

As illustrated in Figure 3, our SK-FIN is able to
generate the most reasonable visual results than other
competing methods. This demonstrates again the ad-
vantage of our designed structural knowledge guidance
than traditional encoder-decoder based framework. For

instance, we synthesize more realistic human face in the
third row in Figure 3, and accurate semantic structure
with less artifacts than other image inpainting methods
in the seventh row. In sum, our SK-FIN is able to restore
corrupted images with large corruption raio. It keeps the
color fidelity of generated image, and reduces the blur-
riness and undesired artifacts than most state-of-the-art
methods.

D. Ablation Study
To further demonstrate the effectiveness of each func-

tional component in our proposed SK-FIN, we conduct
ablation study experiments: w/o Edge notes to train
our SK-FIN without structural estimation branch; w/o
MSA fuses the structural knowledge without multi-head
self-attention mechanism; w/o Ladv denotes to train our
SK-FIN without the adversarial loss function; And Com-
plete is the full model of our proposed SK-FIN. Table 2
lists the performance of four variants of our SK-FIN, and
the results are increasingly better. This demonstrates
the necessity of all functional components in our SK-
FIN.

V. Conclusion

In this paper, we propose a structural knowledge
guided feature reasoning network for single image in-
painting. Inspired by the multi-head attention mecha-
nism in the transformers, we improve it to aggregate the
structural information and pixel information to recon-
struct the corrupted area. By distilling high-frequency
features in the structure estimation branch, the pixel-
level reconstruction branch is able to infer the corrupted
content more accurately. Extensive experiments on three
benchmark datasets demonstrate that our SK-FIN is
able to restore more reasonable content than most state-
of-the-art methods for image inpainting.
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[5] Criminisi A, Pérez P, Toyama K. Region filling and
object removal by exemplar-based image inpaint-
ing[J]. IEEE Transactions on Image Processing, 2004,
13(9): 1200-1212.

6

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2022.16.87 Volume 16, 2022

E-ISSN: 1998-4464 715



[6] Li Z, He H, Tai H M, et al. Color-direction patch-
sparsity-based image inpainting using multidirection
features[J]. IEEE Transactions on Image Processing,
2014, 24(3): 1138-1152.

[7] Ronneberger O, Fischer P, Brox T. U-net: Con-
volutional networks for biomedical image segmen-
tation[C]//International Conference on Medical im-
age computing and computer-assisted intervention.
Springer, Cham, 2015: 234-241.

[8] Goodfellow I, Pouget-Abadie J, Mirza M, et al. Gen-
erative adversarial nets[J]. Advances in neural infor-
mation processing systems, 2014, 27.

[9] Liu G, Reda F A, Shih K J, et al. Image in-
painting for irregular holes using partial convolu-
tions[C]//Proceedings of the European Conference
on Computer Vision. 2018: 85-100.

[10] Yu J, Lin Z, Yang J, et al. Generative image inpaint-
ing with contextual attention[C]//Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition. 2018: 5505-5514.

[11] Yu J, Lin Z, Yang J, et al. Free-form image inpaint-
ing with gated convolution[C]//Proceedings of the
IEEE/CVF International Conference on Computer
Vision. 2019: 4471-4480.

[12] Yu T, Guo Z, Jin X, et al. Region normalization for
image inpainting[C]//Proceedings of the AAAI Con-
ference on Artificial Intelligence. 2020, 34(07): 12733-
12740.

[13] Vaswani A, Shazeer N, Parmar N, et al. Attention
is all you need[C]//Advances in Neural Information
Processing Systems. 2017: 5998-6008.

[14] Nazeri K, Ng E, Joseph T, et al. Edgeconnect:
Structure guided image inpainting using edge pre-
diction[C]//Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision Workshops.
2019: 0-0.

[15] Ren Y, Yu X, Zhang R, et al. Structureflow:
Image inpainting via structure-aware appearance
flow[C]//Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision. 2019: 181-
190.

[16] Bertalmio M, Sapiro G, Caselles V, et al. Image
inpainting[C]//Proceedings of the 27th annual con-
ference on Computer graphics and interactive tech-
niques. 2000: 417-424.

[17] Levin A, Zomet A, Weiss Y. Learning How to In-
paint from Global Image Statistics[C]//Proceedings
of the IEEE/CVF International Conference on Com-
puter Vision. 2003, 1: 305-312.

[18] Efros A A, Freeman W T. Image quilting for texture
synthesis and transfer[C]//Proceedings of the 28th
annual conference on Computer graphics and inter-
active techniques. 2001: 341-346.

[19] Bertalmio M, Vese L, Sapiro G, et al. Simultane-
ous structure and texture image inpainting[J]. IEEE
transactions on image processing, 2003, 12(8): 882-
889.

[20] Barnes C, Shechtman E, Finkelstein A, et al. Patch-
Match: A randomized correspondence algorithm for

structural image editing[J]. ACM Trans. Graph.,
2009, 28(3): 24.

[21] Pathak D, Krahenbuhl P, Donahue J, et al.
Context encoders: Feature learning by inpaint-
ing[C]//Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2016:
2536-2544.

[22] Iizuka S, Simo-Serra E, Ishikawa H. Globally and
locally consistent image completion[J]. ACM Trans-
actions on Graphics, 2017, 36(4): 1-14.

[23] Yeh R A, Chen C, Yian Lim T, et al. Seman-
tic image inpainting with deep generative mod-
els[C]//Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. 2017: 5485-
5493.

[24] Kingma D P, Welling M. Auto-encoding variational
bayes[J]. arXiv preprint arXiv:1312.6114, 2013.

[25] Peng J, Liu D, Xu S, et al. Generating Diverse
Structure for Image Inpainting With Hierarchical
VQ-VAE[C]//Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition.
2021: 10775-10784.

[26] Xiong W, Yu J, Lin Z, et al. Foreground-aware
image inpainting[C]//Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition. 2019: 5840-5848.

[27] Ba J L, Kiros J R, Hinton G E. Layer normaliza-
tion[J]. arXiv preprint arXiv:1607.06450, 2016.

[28] Canny J. A computational approach to edge detec-
tion[J]. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 1986 (6): 679-698.

[29] Simonyan K, Zisserman A. Very deep convolutional
networks for large-scale image recognition[J]. arXiv
preprint arXiv:1409.1556, 2014.

[30] Doersch C, Singh S, Gupta A, et al. What makes
paris look like paris?[J]. ACM Transactions on
Graphics, 2012, 31(4).

[31] Karras T, Aila T, Laine S, et al. Progressive grow-
ing of gans for improved quality, stability, and varia-
tion[J]. arXiv preprint arXiv:1710.10196, 2017.

[32] Zhou B, Lapedriza A, Khosla A, et al. Places: A
10 million image database for scene recognition[J].
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2017, 40(6): 1452-1464.

[33] Xie C, Liu S, Li C, et al. Image inpaint-
ing with learnable bidirectional attention
maps[C]//Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision. 2019:
8858-8867.

[34] Liu H, Jiang B, Song Y, et al. Rethinking im-
age inpainting via a mutual encoder-decoder with
feature equalizations[C]//Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, Au-
gust 23–28, 2020, Proceedings, Part II 16. Springer
International Publishing, 2020: 725-741.

[35] He K, Zhang X, Ren S, et al. Deep residual learning
for image recognition[C]//Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion. 2016: 770-778.

7

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2022.16.87 Volume 16, 2022

E-ISSN: 1998-4464 716



[36] Johnson J, Alahi A, Fei-Fei L. Perceptual
losses for real-time style transfer and super-
resolution[C]//European conference on computer vi-
sion. Springer, Cham, 2016: 694-711.

[37] Stephane M. A wavelet tour of signal processing[J].
1999.

[38] Constance Barson, Reza Saatchi, Prasad Godbole,
Shammi Ramlakhan. Infrared Thermal Imaging to
Detect Inflammatory Intra-Abdominal Pathology in
Infants[J]. WSEAS Transactions on Biology and
Biomedicine, pp. 82-98, Volume 17, 2020

[39] Feng X, and Kan JM. ”A pseudo entropy based self-
organizing neural network for nonlinear system.” In-
ternational Journal of Circuits, Systems and Signal
Processing 13 (2019): 266-272.

Creative Commons Attribution License 4.0 (At-
tribution 4.0 International , CC BY 4.0)
This article is published under the terms of the Creative
Commons Attribution License 4.0

https://creativecommons.org/licenses/by/4.0/deed.en US

8

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2022.16.87 Volume 16, 2022

E-ISSN: 1998-4464 717

https://creativecommons.org/licenses/by/4.0/deed.en_US

	Introduction
	Related Work
	Method
	Main Framework
	Structure Knowledge Guided Attention
	Loss Functions for Supervision Learning

	Experiments
	Datasets
	Implementation Details
	Results Analysis
	Ablation Study

	Conclusion



