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Abstract: - In this paper a new neural model for 

detection of multiple network IoT-based attacks, 

such as DDoS TCP, UDP, and HHTP flood, is 

presented. It consists of feedforward multilayer 

network with back propagation. A general 

algorithm for its optimization during training is 

proposed, leading to proper number of neurons in 

the hidden layers. The Scaled Gradient Descent 

algorithm and the Adam optimization are studied 

with better classification results, obtained by the 

developed classifiers, using the latter. Tangent 

hyperbolic function appears to be proper selection 

for the hidden neurons. Two sets of features, 

gathered from aggregated records of the network 

traffic, are tested, containing 8 and 10 

components. While more accurate results are 

obtained for the 10-feature set, the 8-feature set 

offers twice lower training time and seems 

applicable for real-world applications. The 

detection rate for 7 of 10 different network 

attacks, primarily various types of floods, is 

higher than 90% and for 3 of them – mainly 

reconnaissance and keylogging activities with low 

intensity of the generated traffic, deviates between 

57% and 68%. The classifier is considered 

applicable for industrial implementation. 

 

Key-Words: - DDoS, TCP flood, UDP flood, HTTP 

flood, IoT, attack detection, neural network 
 

I. INTRODUCTION 
 
Aggregated records of network traffic, exchanged 

among multiple front-end devices, many of which 
infected IoT units with various malware, part of 

botnets, and back-end machines, assuring web, 
storage and specific services to multiple clients, 
contain traces of undergoing Distributed Denial of 
Service (DDoS) attacks [1]. Once detected by these 
traces, such attacks could be blocked or at least 
mitigated to an extent that would render regular 
services still operable. Machine learning is a field 
that provides techniques for this kind of analysis. 

Ur Rehman et al. [7] propose Gated Recurrent 
Unit (GRU) as alternative to Recurrent Neural 
Networks (RNN) and Naïve Bayes (NB) to detect 
DDoS reflection and exploitation attacks. They 
achieve accuracy of 99.69% for the first type and 
99.94% – for the second. Nazih et al. [8] also 
incorporate GRU in their study, but combining them 
with RNN (with F1-score varying between 68.53% 
and 87.45%, using character-based features and 
going up to 100% in some cases for token-based 
features) and Long Short-Term Memories (LSTM, 
with even higher F1-scores between 99.36% and 
100%) as a counter-mechanism to DDoS activities in 
Voice over IP (VoIP) networks. They also tried 
combinations with Support Vector Machines (SVM), 
achieving 72.46% as lowest value for the F1-score, 
and as high as 98.23% for a particular case. 
Obviously, the accuracy of classifiers is affected by 
both the feature set and the variety of attacks to be 
detected. 

Chaudahary and Gupta [9] evaluate the detection 
rate of TCP, UDP and HTTP flood in a network with 
multiple IoT devices, applying independently SVM, 
Random Forest (RF), Logistic Regression (LR) and 
Decision Tree (DT). They achieve accuracy of 
98.06%, 99.17%, 97.50% and 98.34%, respectively. 
Given a relatively isolated part of a packet switched 
network with a single or at least limited in number 
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attacks, it becomes possible to detect their presence 
with simpler classifiers. Software Defined Networks 
(SDN) give additional freedom into running multiple 
scenarios of attacks as Ye et al. [10] show. Using 6-
component descriptors the authors manage to obtain 
95.24% accuracy of DDoS attacks detection with a 
SVM, while collecting limited volume of the network 
traffic. Sahoo et al. [11] extend the use of SVM with 
evolutionary algorithms for the same purpose. They 
add Kernel Principal Component Analysis (KPCA) 
and Genetic algorithm (GA), which allows 
dimensionality reduction of feature space and in the 
same time finding the optimal parameters of the 
SVM. The generalizing capability of the classifier 
has been improved with comparison to traditional 
SVM. Another reason for that is the introduction of a 
new kernel function, based on Radial Basis Functions 
(RBF), called N-RBF. Accuracy of 98.55% is 
achieved when a ratio of 70:30 is used between the 
training and the test set. 

Based on already developed implementations, 
Alguliyev et al. [12] propose improved models for 
LSTM and Convolutional Neural Network (CNN) to 
detect DDoS attacks, particularly aimed at social 
media services. The F-measure after testing with the 
CNN is 0.8683 (0.3630 higher than traditional CNN), 
and for the LSTM – 0.8138 (0.1374 higher than other, 
commonly used LSTM). Li and Lu [13] combine 
LSTM with Bayes Approach (BA) to overcome the 
limitations of LSTM alone, related to difficulties of 
the construction process, insufficient accuracy or low 
generalization. Detection accuracy is reported to be 
98.15% with this combined classifier. Lu and Tian 
[14], in their more recent study, tried to enhance the 
performance of classifiers, applied to Advanced 
Metering Infrastructure (AMI), dealing successfully 
with data imbalance and the large number of 
dimensions, typical for the features used. LSTM has 
been combined with dimensionality reduction 
through stacked autoencoder (SAE) and thus the 
capability of spotting abnormal traffic and to get 
efficiently the bidirectional structuring descriptors in 
the same time. Accuracy, achieved over the NSL-
KDD dataset, is 0.9943, while the F1-score is 0.9940 
with False Alarm Rate (FAR) as low as 0.0036. 
Shurman et al. [15] incorporate LSTM into Intrusion 
Detection System (IDS) for detecting DDoS attacks, 
building 3 different models that achieve 91.54%, 
96.74% and 99.19% accuracy over the test set, 
respectively. In comparison, two of the previously 
implemented Random Forest models achieve 99.0% 
and 73.9% accuracy. The LSTM approach is 
considered effective not only on the general type of 
DDoS activities, but also on the reflection type of 

DDoS, where other approaches does not seem to be 
effective enough. 

Deep learning techniques prove to be especially 
efficient into discovering DDoS attacks with the help 
of Fog Computing (FC) [16]. It is innovative 
paradigm that makes use of locally implemented 
analysis over data portions, generated by front-end 
devices, associated with the edge of a complete 
system for attack prevention. Using SDN controllers, 
suspicious activity on transport and network levels 
could be investigated and makes it possible to filter 
malicious packets, while forwarding packets from the 
normal traffic. LSTM are at the base of this approach, 
connecting them to the user, for and cloud system 
into complete framework. It is shown that 2 hidden 
layers, comprising of 128 neurons, are enough in 
order to reach 95.89% validation accuracy , which 
rises to 97.21% for 3 hidden layers [16]. Another 
example of a complete system for DDoS detection is 
LUCID [17], reaching accuracy of 99.67%. It uses 
CNN and is being optimized to extend that lead to 40 
times faster execution to previous systems. Ujjan et 
al. [18] propose  sampling with adaptive polling, 
together with sFlow, as a measure to enhance the 
deep learning efficiency into discovering DDoS in 
SDN, embedding IoT devices. Disadvantages, such 
as low precision, higher memory demand and 
computational overhead, could be avoided. True 
Positive Rate reaches 95% with only 4% of the False 
Positive Rate (FPR). Deep CNNs are also adapted to 
the detection of DDoS activities in Cyber-Physical 
Systems (CPSs), especially those using the benefits 
of 5G networks [19]. Testing over real network data 
with present botnets, which are sources for silent 
calls, unwanted signaling, spam (including SMS) and 
other disrupting actions, discrimination of 91% 
between normal and attacked cell becomes possible. 
DDoS attacks also threaten highly distributed types 
of services, such as the Bitcoin ecosystem and other 
blockchain systems. Back et al. [20] propose 
multilayer neural network with preliminary reduction 
of the number of dimensions of features, using 
Principal Component analysis (PCA), as a possible 
solution to this problem. They grouped the extracted 
data to Block and Transaction level with further 
estimation of whether the transactions are input or 
output. Resulting accuracy over the test set reaches 
55.12% for DDoS related samples and 72.36% - for 
normal samples. Stacked Auto-Encoder Multilayer 
Perceptron (SAE-MLP) is the base of the DLSDN 
system, proposed by Ahuja et al. [21] for detecting 
DDoS attacks in SDN. Accuracy score from tests 
reaches 99.75% when working with a dataset, 
containing TCP-SYN, UDP flood and ICMP flood 
samples, along with normal traffic samples. 
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Comparison with CNN, LSTM, CNN-LSTM and 
SVC-SOM (Linear Support Vector Classifier with 
Self-Organizing Map) shows differences towards 
lower accuracy with 1.01%, 4.15%, 0.27%, and 
0.3%, respectively. DeepDefense [22] is another 
example of a complete system, in this case using 
RNN as foundation, for detecting DDoS, where 
enhanced training reduces the detection error from 
7.52% to 2.10%. 

The main goal of this study is to find an optimal 
configuration of multilayer feedforward neural 
network for detection of multiple DoS, DDoS and 
reconnaissance attacks, carried out by IoT botnets by 
analyzing the network traffic to various machines, 
offering legitimate services. Such a neural model 
would allow simpler and faster implementation of a 
detection tool with a comparison to others more 
complicated solutions, such as recurrent neural 
networks and others. 

In Section 2 the test database is described, 
together with the mutual distribution of samples over 
the features for classification, the general structure of 
the classifier and algorithm for its optimization. 
Section 3 contains the experimental results, which are 
commented in Section 4. Conclusion is made in 
Section 5. 

 
 

II. METHODOLOGY AND APPROACH 
 
A. Test database 

The test database is developed by a group of 
researchers from the University of New South Wales 
in Canberra, Australia [1]. It contains records from 
sessions among 4 simulated IoT bots, using Kali 
Linux, infected by malware, that carries out both DoS 
(Denial of Service) and DDoS (Distributed Denial of 
Service) by TCP (Transmission Control Protocol), 
UDP (User Datagram Protocol) and HTTP 
(Hypertext Transfer Protocol), as well as 
Keylogging, Data theft activities, OS Fingerprinting 
and Sniffing. These bots generate malicious traffic to 
an Ubuntu Server and Ubuntu Mobile, Windows 7, 
and Metasploitable workstations from internal 
network. Normal activities from the infected IoT 
devices with their related normal network traffic are 
also being captured by an Ubuntu Tap, corresponding 
to simulated weather station, smart fridge, controlled 
lights, automated garage door and an intelligent 
thermostat, using the MQTT (Message Queuing 
Telemetry Transport) protocol. 

Ten features from the network traffic records are 
extracted as most promising for spotting the 
undergoing attacks – seq – sequence number of the 
capturing software, min – minimal duration of a 

record, mean – average duration of a record, max – 
maximum duration of a record, state_number – 
identifier for a feature state, N_IN_Conn_P_SrcIP – 
number of incoming connections for a source IP 
address, N_IN_Conn_P_DstIP – number of 
incoming connections for a destination IP address, 
srate – number of packets in a second between source 
and destination node, drate – rate of packets between 
destination and source node, and stddev – standard 
deviation of the registered records. 

The part of training samples in the current study 
is 2934817, and the test samples are 733705. Class 0 
corresponds to normal traffic, 1, 2, and 3 – to DoS 
TCP, UDP, HTTP, respectively, 4, 5, and 6 – to 
DDoS TCP, UDP, HTTP, respectively, 7 – 
Keylogging, 8 – Data Exfiltration, 9 - OS 
Fingerprinting, and 10 – Service Scan. Distribution 
of training samples by class is given in Fig. 1, with a 
similar proportion for the test set. 

 

 
Fig 1: Distribution of the training samples by attack class 
 

 
B. Distribution of features 

The full set of 10 features need to be investigated as 
a distribution over all samples from the test database 
in order to determine the most influencing 
components over the separation of the classes. One of 
the simplified methods to accomplish this task is the 
FreeViz [6]. It is multivariate visualization approach, 
which makes use of simple physical interpretation of 
charge interaction in space, based on generated forces 
of attraction and repelling and the resulting 
movement of the charges until stable configuration 
with minimal potential energy is met [6]. Charges in 
this instance are samples – those from different 
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classes are going apart from each other, and those 
from one and the same class – towards a mutual 
center. The final redistribution is presented in two-
dimensional space (2D projection), from where it 
could be judged which components have the greatest 
influence on the class discrimination. The 
computational steps are based on the following 
simple considerations -  the force of interaction 
between charge q1 and q2 is Fq1->q2. A charge 
typically has the following components q = [q1, q2, 
…, qn]. The corresponding n-dimensional point could 
be projected in 2D by the matrix A with i-th row Ai = 
[Ax

i, Ay
i], which will transform the i-th base 

component to its x and y components in 2D [6]. So, 
the sample will be transformed as q’ = qA, where qx 
= sumi(eiAx

i) and qy = sumi(eiAy
i) [6]. If E is the 

potential energy of the system and A – the work 
associated with a movement of a charge by particular 
force, then the following equations hold true [6]: 

 
 𝑑𝐸 = 𝐴 = −𝑭𝑞1→𝑞2

𝑑𝒒′, (1) 
 
 𝑭𝑞 = ∑ 𝑭𝑞1→𝑞2𝑞1≠𝑞2

, (2) 
 
 𝑑𝐸 = − ∑ 𝑭𝑞𝑑𝒒′𝑞 , (3) 
 
 𝑑𝐸 = − ∑ 𝑭𝑞(𝒒𝑑𝑨)𝑞 , (4) 
 
 𝑑𝐸

𝑑𝐴𝑥
𝑖 = − ∑ 𝑭𝑞,𝑥𝑞𝑖

𝑞 . (5) 
 
Analogous is the process to project data samples and 
find the location of related feature axes over the 
verticals, that is y in 2D. Then optimization is 
performed using the Gradient Descent algorithm to 
rotate all projected vectors, corresponding to selected 
features, that they relate the most to the clusters of 
samples in the same space of projection. 

Using the FreeViz tool from the Orange data 
mining software and passing all test samples, the 
initial distribution in 2D with equal spread of features 
along a circular pattern is given in Fig. 2.a. 

After optimization by the FreeViz in 2D (Fig.2.b) 
it is observed that the seq and N_IN_Conn_P_SrcIP 
axes cover the least of changes over all samples. The 
second feature is connected primarily to vectors, 
belonging to class 1 attack (shown in red in the lower 
right part of the figure), but with a small variance, 
thought to be less informative than drate, srate and 
N_IN_Conn_P_DstIP. This is the reason to select in 
a second set of experiments to train and test a 
classifier with only 8 features, omitting seq and 
N_IN_Conn_P_SrcIP. 
 

 
C. Proposed multilayer feedforward neural network 

architecture 

Taking into account the work of Koroniotis et al. 
[1], where a Recurrent Neural Network with 7 hidden 
layers is proposed for detecting multiple IoT based 
network attacks, predominantly DDoS ones, an 
alternative neural network structure is proposed 
within this study. It is a feedforward neural network 
with similar degree of complexity in number of 
neurons, again with 7 hidden layers, but without the 
recurrent connections in it (Fig. 3). 
 

 
a  

 
b 
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Fig 2: FreeViz representation of test data in 2D: a) initial 
location of samples, b) after optimization (below is the color 

legend for persistent classes) 
 
The input layer (IL) consists of 10 connections for the 
complete set of 10 features (f1, …, f10), which in one 
of the tested variations of the network is reduced to 8 
features. Then, follow the hidden layers – HL1, HL2, 
…, HL7, and finally the output layer (OL) consists of 
11 connections a0 – indicating normal traffic, and a1- 
a10 – for the 10 types of attacks present in the 
network. 
 

 
Fig 3: Constructed multilayer neural network for detection of 

IoT based network attacks 
 

Feature components could be arranged as a vector 
𝑓 = {𝑓1, 𝑓2, … , 𝑓𝑁1

}, where N1 is either 8 or 10. For all 
the layers k = 1, …, 9, including the IL and the OL, 
the weights of neurons also could be grouped in a 
vector 𝑤𝑖

𝑘⃗⃗ ⃗⃗ ⃗⃗ = {𝑤1𝑖
𝑘 , … , 𝑤𝑁𝑘𝑖

𝑘 }. Following one of our 
previous studies on discriminating network traffic to 
malicious and normal one, using feedforward neural 
networks [2], all neurons from the hidden layers are 
preferred to have tangent hyperbolic (Tanh) 
activation function, that is the function gk, k = 2, …, 
8. Then, the resulting values from the output of each 
neuron could also be represented as a vector 𝑜𝑘⃗⃗ ⃗⃗⃗ =

{𝑜1
𝑘, … , 𝑜𝑁𝑘

𝑘 }. It is expected during the training some 
of the connections between neurons from adjacent 
layers to be lost, and other – harden, but initially the 
network is fully connected. The level of the resulting 
signal from each neuron i in layer k could be found 
according to the equation below [3]: 

 
 𝑜𝑖

𝑘 = 𝑔𝑘 (ℎ𝑖
𝑘

) = 𝑔𝑘 (𝑤𝑖
𝑘⃗⃗ ⃗⃗ ⃗⃗  . о𝑘−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝑏𝑖

𝑘
) = 𝑏𝑖

𝑘 +

∑ 𝑤𝑗𝑖
𝑘𝑁𝑘

𝑗=1 𝑜𝑗
𝑘−1.  (8) 

 
In (8) hi

k is the weighted input for the same i-th 
neuron from k-th layer, which could be also biased by 
the component bi

k, associated alone with the same 
neuron. 

Each input vector 𝑓𝑖
⃗⃗⃗ has associated target value (or 

label) ti, for i = 1, …, M. Comparing all output values 

from the last layer (OL) oi
9 with designated target ti, 

it is possible to evaluate the accuracy of 
classification. Both the mean square (MSE) and the 
root mean square (RMSE) errors could be employed 
for integral evaluation in that process [3]: 
 
 𝑀𝑆𝐸 =  

1

𝑀
∑ (𝑜𝑖 − 𝑡𝑖)2𝑀

𝑖=1 , (9) 

 𝑅𝑀𝑆𝐸 =  
∑ (𝑡𝑖−𝑜𝑖)2𝑀

𝑖=1

∑ (𝑡𝑖−𝑜̅)2𝑀
𝑖=1

, (10) 

 
where 𝑜̅ is the average output for the particular 
class (attack). 

The update of the weight for neuron j from layer 
k, connected to neuron i, is done according to [4]: 

 
 ∆𝑤𝑖𝑗

𝑘 = −𝛼
𝜕𝐸(𝑓)

𝜕𝑤𝑖𝑗
𝑘 = −𝛼𝛿𝑗𝑜𝑖, (11) 

 
 𝛿𝑗 = 𝑔′𝑘 (ℎ𝑖

𝑘
) ∑ 𝑤𝑘𝑗𝛿𝑘𝑘 , (12) 

 
where the sum in (12) covers all neurons, taking as 
input the resulting value from the output of the j-th 
neuron. In (11) f denotes current feature sample and 
α is the learning rate.  
 
 
D. Finding the optimal structure of the classifier 

No precise rule exists for choosing the number of 
neurons in the hidden layers of a feedforward neural 
network with back propagation, in this instance NHL2, 
NHL3, NHL4, NHL5, NHL6, NHL7, NHL8. In the current 
study, an iterative approach is selected with step-wise 
increase of these numbers, according to Fig. 4. 
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Fig 4: Optimization algorithm of the neural network structure 

 
Twelve implementations of the neural network of 

the studied type are tested, having respectively 20-
30-30-50-70-70-90, 30-40-40-60-80-80-100 and 40-
50-50-70-90-90-110 neurons in the hidden layers. 
Each variant is trained and tested once with 10 and 
separately with 8 features – one time using the Scaled 
Gradient Descent (SGD) algorithm and second time 
– using the Adam optimization. 

According to algorithm from Fig. 4, end of 
training comes when either the MSE falls down to 
0.0001 or the number of epochs reaches 1000. 
Confusion matrices of the complete set of tested 
neural networks are then compared - as per the 
average proportion of the actual detected attacks, the 
ability to discriminate attack vs. non-attack input and 
also training and testing times are considered in order 
to derive the optimal combination of number of 
neurons from the hidden layers, plus the optimal set 
of input features – either 8, or 10. 

The single valued parameters, that could be 
derived from confusion matrices are the True 
Positives (TP), True Negatives (TN), False Positives  
(FP), False Negatives (FN), Precision, Recall, 
Specificity, F1-measure, Log-loss, and Classification 
accuracy (CA) [5]. 
 

 

III.  EXPERIMENTAL RESULTS 
The following components of an IBM compatible 
PC, used for experimentation, supported the 
numerical simulations – a 4-core CPU Intel Xeon E5-
1620, working at 3.50 GHz, having 256 kB L1 cache, 

1 MB – L2 and 10 MB – L3; 64 GB RAM; 2 TB 
HDD. The operating system is Microsoft Windows 
10 Professional, version 20H2. Visual programming 
of the neural networks, together with the training, 
validation and testing is done with the Orange v. 3.28 
application.  

The parameters of the neural networks that are 
trained and tested within the current study are given 
in Table 1. Regularization parameter for all 
modifications is α = 0.0001 and the maximum 
number of epochs for training is set to 1000. 

 
Table 1: Neural networks parameters 

Name Number 
of 

features 

Training 
algorithm 

Number neurons by layers 
from input to output 

NN1 10 SGD 10-20-30-30-50-70-70-90-11 
NN2 10 SGD 10-30-40-40-60-80-80-100-11 
NN3 10 SGD 10-40-50-50-70-90-90-110-11 
NN4 10 Adam 10-20-30-30-50-70-70-90-11 
NN5 10 Adam 10-30-40-40-60-80-80-100-11 
NN6 10 Adam 10-40-50-50-70-90-90-110-11 
NN7 8 SGD 10-20-30-30-50-70-70-90-11 
NN8 8 SGD 10-30-40-40-60-80-80-100-11 
NN9 8 SGD 10-40-50-50-70-90-90-110-11 
NN10 8 Adam 10-20-30-30-50-70-70-90-11 
NN11 8 Adam 10-30-40-40-60-80-80-100-11 
NN12 8 Adam 10-40-50-50-70-90-90-110-11 

 
The ratio of discovered attacks during training as 

a proportion of the actual ones, using the full set of 
10 features for both the Adam and SGD algorithms 
for all 3 tested neural networks, is given in Table 2. 

 
Table 2: Proportion discovered attacks from the actual instances 

from full training set validation at 10 features, in % 
Attack NN1 NN2 NN3 NN4 NN5 NN6 

0 93.8 93.5 89.2 88.9 93.0 81.1 
1 95.8 97.0 98.5 95.7 95.2 98.1 
2 100.0 100.0 100.0 100.0 100.0 100.0 
3 86.1 78.8 82.3 81.5 94.1 84.1 
4 96.1 95.6 93.5 95.1 95.6 94.9 
5 100.0 99.9 99.9 99.9 99.9 100.0 
6 89.6 92.5 73.3 91.1 72.4 96.9 
7 0.0 52.5 66.1 86.4 66.1 88.1 
8 0.0 0.0 0.0 0.0 16.7 50.0 
9 56.4 54.4 56.7 55.2 57.3 39.4 

10 96.3 96.1 96.1 93.8 95.2 98.9 
All 74.0 78.2 77.8 80.7 80.5 84.7 

 
In the same time, the resulting proportions over 

the training set, when using only 8 of the 10 features 
are given in Table 3. 

 
Table 3: Proportion discovered attacks from the actual instances 

from full training set validation at 8 features, in % 
Attack NN7 NN8 NN9 NN10 NN11 NN12 

0 73.8 87.0 79.5 57.8 88.6 53.2 
1 76.9 76.7 78.3 73.6 71.8 73.3 
2 99.7 99.8 99.7 99.6 99.9 99.5 
3 35.3 37.1 38.9 80.6 27.6 30.4 
4 97.5 94.6 95.9 98.2 98.2 96.2 
5 99.9 99.7 99.9 99.9 99.4 99.4 
6 34.4 31.8 42.4 37.8 64.0 33.5 
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7 0.0 16.9 1.7 0.0 10.2 18.6 
8 0.0 0.0 0.0 0.0 0.0 0.0 
9 1.7 5.1 5.0 4.9 4.2 5.0 

10 99.0 99.0 98.9 98.3 96.5 97.2 
All 56.2 58.9 58.2 59.2 60.0 55.1 

 
Testing of the trained models over the complete 

test set leads to proportions of correctly discovered 
attacks to all by types, shown in Table 4, when using 
10 features. 

 
Table 4: Proportion discovered attacks from the actual instances 

from full testing set validation at 10 features, in % 
Attack NN1 NN2 NN3 NN4 NN5 NN6 

0 86.0 88.8 88.8 85.0 91.6 80.4 
1 95.3 97.0 96.3 95.7 95.2 98.0 
2 100.0 100.0 100.0 100.0 100.0 99.9 
3 65.8 79.1 90.7 84.1 90.4 83.4 
4 96.0 95.6 96.2 95.2 95.6 94.9 
5 99.9 99.9 100.0 99.9 99.9 100.0 
6 50.7 88.7 87.2 92.1 68.5 95.6 
7 0.0 50.0 57.1 92.9 57.1 92.9 
8 0.0 0.0 0.0 0.0 0.0 0.0 
9 42.1 54.9 56.1 55.6 57.6 40.2 

10 98.1 96.2 96.4 93.9 95.1 98.9 
All 73.4 85.0 86.9 89.4 85.1 88.4 

 
The results of discriminating attacks from the 

records in the test set, employing 8 features, are given 
in Table 5.  

Processing times of training and testing on both 
the train and test set are presented in Table 6. 

Classification accuracy (CA), F1-measure, 
Precision, Recall, LogLoss and Specificity, obtained 
from working with the test set could be seen in Table 
7. 

As described in the discussion bellow, the optimal 
configuration for 10 features is selected from NN5, 
and for 8 features – for NN11. The confusion matrices 
from classification over the test set are shown in Fig. 
5 and Fig. 6, respectively. 

 
Table 5: Proportion discovered attacks from the actual instances 

from full testing set validation at 8 features, in % 

Attack NN7 NN8 NN9 NN10 NN11 NN12 
0 73.8 87.0 79.5 57.8 88.6 53.2 
1 76.9 76.7 78.3 73.6 71.8 73.3 
2 99.7 99.8 99.7 99.6 99.9 99.5 
3 35.3 37.1 38.9 80.6 27.6 30.4 
4 97.5 94.6 95.9 98.2 98.2 96.2 
5 99.9 99.7 99.9 99.9 99.4 99.4 
6 34.4 31.8 42.4 37.8 64.0 33.5 
7 0.0 16.9 1.7 0.0 10.2 18.6 
8 0.0 0.0 0.0 0.0 0.0 0.0 
9 1.7 5.1 5.0 4.9 4.2 5.0 

10 99.0 99.0 98.9 98.3 96.5 97.2 
All 56.2 58.9 58.2 59.2 60.0 55.1 

 
 

Table 6: Neural networks processing times 
Neural 

Network 
Training time, 

sec 
Testing over 
train set, sec 

Testing over 
test set, sec 

NN1 60750.79 152.92 30.69 
NN2 52097.14 223.74 40.53 
NN3 63164.43 143.01 36.65 
NN4 20379.68 130.45 40.61 
NN5 36476.55 155.19 40.72 
NN6 44199.82 155.40 49.26 
NN7 42569.97 179.38 29.90 
NN8 28490.63 214.32 49.12 
NN9 32927.37 196.71 44.46 
NN10 13113.01 191.26 35.71 
NN11 159480.7 167.50 51.29 
NN12 15747.10 233.59 62.84 

 
 
 

Table 7: Neural networks efficiency 
Neural 

Network 
CA F1 Precision Recall LogLoss Specificity 

NN1 0.9795 0.9793 0.9795 0.9795 0.0413 0.9954 
NN2 0.9797 0.9796 0.9799 0.9797 0.0411 0.9956 
NN3 0.9772 0.9771 0.9783 0.9772 0.0485 0.9956 
NN4 0.9760 0.9761 0.9764 0.9760 0.0511 0.9951 
NN5 0.9768 0.9768 0.9770 0.9768 0.0502 0.9950 
NN6 0.9797 0.9792 0.9805 0.9797 0.0404 0.9959 
NN7 0.9482 0.9450 0.9508 0.9482 0.1050 0.9842 
NN8 0.9399 0.9371 0.9408 0.9399 0.1318 0.9823 
NN9 0.9465 0.9438 0.9479 0.9465 0.1066 0.9841 
NN10 0.9443 0.9410 0.9476 0.9443 0.1046 0.9825 
NN11 0.9399 0.9361 0.9441 0.9399 0.1273 0.9808 
NN12 0.9362 0.9329 0.9387 0.9362 0.1332 0.9805 
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Fig 5: Confusion matrix for NN5 from classification of the test set 

 

 
Fig. 6: Confusion matrix for NN11 from classification of the test set 

 
 

IV. DISCUSSION 
The first observation, comparing the training 
efficiency of SGD and Adam optimization at 10 
features (Table 2), is that the classifiers, employing 
SGD, achieve from 2.3% to 6.9% less correctly 
predicted number of attacks, than those, using Adam. 
When using 8 features, the difference is from 1.1% to 
3%, after applying validation over the full training set 
(Table 3). During testing with 10 features, Adam 
leads to increase of correct prediction from 0.1% to 
16% (Table 4), and for 8 features – from 1.1% to 3% 

(Table 5). These results indicate that Adam could be 
preferred in front of SGD for the particular task.  

Training times are smaller for the Adam algorithm 
– in the order between 2 and 3 times (Table 6). Yet, 
this is another factor, that gives flavor towards the 
selection of Adam optimization for future 
implementations of classifiers for multiple network 
attacks discrimination. The period, taken for full test 
set classification, is comparable between Adam and 
SGD, which means that the structures of the 
classifiers are similar, with almost equal number of 
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preserved connections between neurons and thus 
almost equal number of computations to accomplish. 
Training by one or the other algorithm would not 
significantly affect the processing speed of a real-
world module, embedded in a monitoring position 
within the network. 

Although the classification accuracy (CA) is 
higher for smaller number of neurons in the hidden 
layers for some of the realizations (Table 7), it is 
worth noting that the number of correctly discovered 
normal instances of network connections is highest 
for the networks with middle number of neurons 
(seen from confusion matrices in Fig. 5 and Fig. 6), 
that is the configuration - 10-30-40-40-60-80-80-
100-11. This is true for both variants, employing 8 
and 10 features. The maximal variation of CA for 
Adam optimization is 0.0029 among the three 
structures at 10 features and 0.0044 – at 8 features. 
Thus, it is found that the optimal configurations for 
10 and 8 features are NN5 and NN11, respectively. 
Using 10 features leads to 0.0369 higher CA, or 
3.93%. Similar are the proportions for the rest of the 
accuracy parameters, presented in Table 7. It turns 
out that is more difficult to spot normal traffic with 8 
features – the correct rate of discovery of these 
instances is 11.36% less (Fig. 5 and 6). On the other 
hand, the training time of NN11 is almost twice less 
than that of NN5, which means that in practical 
scenarios with high critical demands for adaptation 
speed (re-training) of the classifier, it would be 
preferable to use the 8-feature implementation. 

Looking at the most precise configuration, NN5, 
the least discovered attacks are – 7 – with 57.1% of 
the actual instances, 9 – with 57.6%, 6 – with 68.5% 
and all the rest are above 90% with a modest rate of 
90.4% for the 3rd type of attack and 100% - for the 2nd 
(Fig. 5). One of the main reasons for this result is the 
lower number of instances, corresponding to these 
types of attacks. The complete network connections 
and associated traffic ratio among various attacks is 
however close to what is being observed during ral 
DoS and DDoS activities, so these discovery rates 
could be acknowledged as satisfactory. 

Comparison between the Recurrent Neural 
network (RNN), developed in [1], and NN5 with 
regard to the DDoS attacks, implemented in the test 
network environment, is presented in Table 9. The 
number of layers and the number of hidden neurons 
in the RNN are the same as those in NN5. Although 
the CA is smaller with 0.0194, for all these attacks 
NN5 performs better as per the F1-measure. 
 

Table 9. Performance comparison between RNN, [1], and the 
proposed classifier for DDoS HTTP, TCP and UDP 

Parameter CA Precision Recall F1 

DDoS HTTP, 
RNN [1] 0.9932 0.9930 0.9970 0.0147 

DDoS HTTP, 
Proposed 0.9998 0.8742 0.6847 0.7679 

DDoS TCP, 
RNN [1] 0.9999 0.9999 0.9999 0.0105 

DDoS TCP, 
Proposed 0.9805 0.9698 0.9565 0.9631 

DDoS UDP, 
RNN [1] 0.9999 0.9999 0.9999 0.0063 

DDoS UDP, 
Proposed 0.9996 0.9997 0.9989 0.9993 

 
In Table 10, it could be seen similar results for the 

DoS attacks – NN5 has smaller CA with 0.0177, 
compared to RNN, for the TCP flood, but again F1 is 
much higher for all considered instances. 

 
Table 10. Performance comparison between RNN, [1], and the 

proposed classifier for DoS HTTP, TCP and UDP 
Parameter CA Precision Recall F1 

DoS HTTP, 
RNN [1] 0.9806 0.9898 0.9845 0.0314 

DoS HTTP, 
Proposed 0.9998 0.7576 0.9036 0.8242 

DoS TCP, 
RNN [1] 0.9999 0.9999 0.9999 0.0713 

DoS TCP, 
Proposed 0.9822 0.9429 0.9521 0.9475 

DoS UDP, 
RNN [1] 0.9999 0.9999 0.9999 0.0126 

DoS UDP, 
Proposed 0.9996 0.9990 0.9997 0.9993 

 
Table 11 reveals resulting accuracy in 

discriminating all remaining types of attacks by the 
proposed multilayer feedforward neural network, 
which tends to be higher than that of the RNN, with 
the Service Scan case, where both classifier perform 
almost equally. 

Given all resulting parameters for accuracy from 
Tables 9-11 and the fact that the feedforward neural 
network has a simpler structure than the RNN, where 
recurrent connections are introduced for some of the 
neurons, that is taking more time for training and to 
perform the calculations at the classification stage, 
the proposed here NN5 could be considered more 
efficient classifier. 

 
Table 11. Performance comparison between RNN, [1], and the 
proposed classifier for OS Fingerprinting, Service Scan, Data 

Exfiltration and Keylogging 
Parameter CA Precision Recall F1 

OS Finger, 
RNN [1] 0.9917 0.9984 0.9931 0.0587 

OS Finger, 
Proposed 0.9952 0.8325 0.9505 0.8876 

Service Scan, 
RNN [1] 0.9957 0.9986 0.9971 0.2159 

Service Scan, 
Proposed 0.9952 0.8342 0.9515 0.8890 

Data Exfilt., 
RNN [1] 0.9875 0.0000 0.0000 0.0000 

Data Exfilt., 
Proposed 0.9966 0.6871 0.5755 0.6264 
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Keylogging, 
RNN [1] 0.9873 0.9853 0.9178 0.0021 

Keylogging, 
Proposed 0.9999 1.0000 0.5714 0.7272 

 
 

V.  CONCLUSION 
In this paper a new implementation of a feedforward 
multilayer neural network with backpropagation is 
proposed for classification of IoT-based DoS, DDoS 
and other malicious network activities. Wide variety 
of tests prove the Adam optimization procedure as 
more efficient than the Scaled Gradient Descend 
algorithm. Tangent hyperbolic activation function 
tends to be suitable for all neurons from the hidden 
layers. Both the training and classification times 
suggest the applicability of the neural model in real-
word applications. Using 8, less informative features, 
of the complete set of 10 features, seems a balanced 
solution with regard to classification accuracy, which 
could speed up the training process at least twice. 
Some of the attacks, such as Keylogging and OS 
Fingerprinting, given the significantly lower 
intensity of generated traffic, are more difficult to 
discover with around 57% detection rate. Additional 
modifications of the classifier are needed, possibly, 
incorporating it in a stacked realization with other 
classifiers in order to catch similar activities, equally 
well with the more intense flood attacks. 
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