
Multiple IoT based Network Attacks Discrimination by
Multilayer Feedforward Neural Networks

Vanya Ivanova
French Faculty of Electrical Engineering

Technical University of Sofia
8 Kliment Ohridski Blvd., 1756 Sofia

Bulgaria

Received: July 5, 2021. Revised: December 28, 2021. Accepted: January 15, 2022. Published: January 17, 2022.

Abstract: - In this paper a new neural model for

detection of multiple network IoT-based attacks,

such as DDoS TCP, UDP, and HHTP flood, is

presented. It consists of feedforward multilayer

network with back propagation. A general

algorithm for its optimization during training is

proposed, leading to proper number of neurons in

the hidden layers. The Scaled Gradient Descent

algorithm and the Adam optimization are studied

with better classification results, obtained by the

developed classifiers, using the latter. Tangent

hyperbolic function appears to be proper selection

for the hidden neurons. Two sets of features,

gathered from aggregated records of the network

traffic, are tested, containing 8 and 10

components. While more accurate results are

obtained for the 10-feature set, the 8-feature set

offers twice lower training time and seems

applicable for real-world applications. The

detection rate for 7 of 10 different network

attacks, primarily various types of floods, is

higher than 90% and for 3 of them – mainly

reconnaissance and keylogging activities with low

intensity of the generated traffic, deviates between

57% and 68%. The classifier is considered

applicable for industrial implementation.

Key-Words: - DDoS, TCP flood, UDP flood, HTTP

flood, IoT, attack detection, neural network

I. INTRODUCTION

Aggregated records of network traffic, exchanged

among multiple front-end devices, many of which
infected IoT units with various malware, part of

botnets, and back-end machines, assuring web,
storage and specific services to multiple clients,
contain traces of undergoing Distributed Denial of
Service (DDoS) attacks [1]. Once detected by these
traces, such attacks could be blocked or at least
mitigated to an extent that would render regular
services still operable. Machine learning is a field
that provides techniques for this kind of analysis.

Ur Rehman et al. [7] propose Gated Recurrent
Unit (GRU) as alternative to Recurrent Neural
Networks (RNN) and Naïve Bayes (NB) to detect
DDoS reflection and exploitation attacks. They
achieve accuracy of 99.69% for the first type and
99.94% – for the second. Nazih et al. [8] also
incorporate GRU in their study, but combining them
with RNN (with F1-score varying between 68.53%
and 87.45%, using character-based features and
going up to 100% in some cases for token-based
features) and Long Short-Term Memories (LSTM,
with even higher F1-scores between 99.36% and
100%) as a counter-mechanism to DDoS activities in
Voice over IP (VoIP) networks. They also tried
combinations with Support Vector Machines (SVM),
achieving 72.46% as lowest value for the F1-score,
and as high as 98.23% for a particular case.
Obviously, the accuracy of classifiers is affected by
both the feature set and the variety of attacks to be
detected.

Chaudahary and Gupta [9] evaluate the detection
rate of TCP, UDP and HTTP flood in a network with
multiple IoT devices, applying independently SVM,
Random Forest (RF), Logistic Regression (LR) and
Decision Tree (DT). They achieve accuracy of
98.06%, 99.17%, 97.50% and 98.34%, respectively.
Given a relatively isolated part of a packet switched
network with a single or at least limited in number

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.84 Volume 16, 2022

E-ISSN: 1998-4464 675

attacks, it becomes possible to detect their presence
with simpler classifiers. Software Defined Networks
(SDN) give additional freedom into running multiple
scenarios of attacks as Ye et al. [10] show. Using 6-
component descriptors the authors manage to obtain
95.24% accuracy of DDoS attacks detection with a
SVM, while collecting limited volume of the network
traffic. Sahoo et al. [11] extend the use of SVM with
evolutionary algorithms for the same purpose. They
add Kernel Principal Component Analysis (KPCA)
and Genetic algorithm (GA), which allows
dimensionality reduction of feature space and in the
same time finding the optimal parameters of the
SVM. The generalizing capability of the classifier
has been improved with comparison to traditional
SVM. Another reason for that is the introduction of a
new kernel function, based on Radial Basis Functions
(RBF), called N-RBF. Accuracy of 98.55% is
achieved when a ratio of 70:30 is used between the
training and the test set.

Based on already developed implementations,
Alguliyev et al. [12] propose improved models for
LSTM and Convolutional Neural Network (CNN) to
detect DDoS attacks, particularly aimed at social
media services. The F-measure after testing with the
CNN is 0.8683 (0.3630 higher than traditional CNN),
and for the LSTM – 0.8138 (0.1374 higher than other,
commonly used LSTM). Li and Lu [13] combine
LSTM with Bayes Approach (BA) to overcome the
limitations of LSTM alone, related to difficulties of
the construction process, insufficient accuracy or low
generalization. Detection accuracy is reported to be
98.15% with this combined classifier. Lu and Tian
[14], in their more recent study, tried to enhance the
performance of classifiers, applied to Advanced
Metering Infrastructure (AMI), dealing successfully
with data imbalance and the large number of
dimensions, typical for the features used. LSTM has
been combined with dimensionality reduction
through stacked autoencoder (SAE) and thus the
capability of spotting abnormal traffic and to get
efficiently the bidirectional structuring descriptors in
the same time. Accuracy, achieved over the NSL-
KDD dataset, is 0.9943, while the F1-score is 0.9940
with False Alarm Rate (FAR) as low as 0.0036.
Shurman et al. [15] incorporate LSTM into Intrusion
Detection System (IDS) for detecting DDoS attacks,
building 3 different models that achieve 91.54%,
96.74% and 99.19% accuracy over the test set,
respectively. In comparison, two of the previously
implemented Random Forest models achieve 99.0%
and 73.9% accuracy. The LSTM approach is
considered effective not only on the general type of
DDoS activities, but also on the reflection type of

DDoS, where other approaches does not seem to be
effective enough.

Deep learning techniques prove to be especially
efficient into discovering DDoS attacks with the help
of Fog Computing (FC) [16]. It is innovative
paradigm that makes use of locally implemented
analysis over data portions, generated by front-end
devices, associated with the edge of a complete
system for attack prevention. Using SDN controllers,
suspicious activity on transport and network levels
could be investigated and makes it possible to filter
malicious packets, while forwarding packets from the
normal traffic. LSTM are at the base of this approach,
connecting them to the user, for and cloud system
into complete framework. It is shown that 2 hidden
layers, comprising of 128 neurons, are enough in
order to reach 95.89% validation accuracy , which
rises to 97.21% for 3 hidden layers [16]. Another
example of a complete system for DDoS detection is
LUCID [17], reaching accuracy of 99.67%. It uses
CNN and is being optimized to extend that lead to 40
times faster execution to previous systems. Ujjan et
al. [18] propose sampling with adaptive polling,
together with sFlow, as a measure to enhance the
deep learning efficiency into discovering DDoS in
SDN, embedding IoT devices. Disadvantages, such
as low precision, higher memory demand and
computational overhead, could be avoided. True
Positive Rate reaches 95% with only 4% of the False
Positive Rate (FPR). Deep CNNs are also adapted to
the detection of DDoS activities in Cyber-Physical
Systems (CPSs), especially those using the benefits
of 5G networks [19]. Testing over real network data
with present botnets, which are sources for silent
calls, unwanted signaling, spam (including SMS) and
other disrupting actions, discrimination of 91%
between normal and attacked cell becomes possible.
DDoS attacks also threaten highly distributed types
of services, such as the Bitcoin ecosystem and other
blockchain systems. Back et al. [20] propose
multilayer neural network with preliminary reduction
of the number of dimensions of features, using
Principal Component analysis (PCA), as a possible
solution to this problem. They grouped the extracted
data to Block and Transaction level with further
estimation of whether the transactions are input or
output. Resulting accuracy over the test set reaches
55.12% for DDoS related samples and 72.36% - for
normal samples. Stacked Auto-Encoder Multilayer
Perceptron (SAE-MLP) is the base of the DLSDN
system, proposed by Ahuja et al. [21] for detecting
DDoS attacks in SDN. Accuracy score from tests
reaches 99.75% when working with a dataset,
containing TCP-SYN, UDP flood and ICMP flood
samples, along with normal traffic samples.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.84 Volume 16, 2022

E-ISSN: 1998-4464 676

Comparison with CNN, LSTM, CNN-LSTM and
SVC-SOM (Linear Support Vector Classifier with
Self-Organizing Map) shows differences towards
lower accuracy with 1.01%, 4.15%, 0.27%, and
0.3%, respectively. DeepDefense [22] is another
example of a complete system, in this case using
RNN as foundation, for detecting DDoS, where
enhanced training reduces the detection error from
7.52% to 2.10%.

The main goal of this study is to find an optimal
configuration of multilayer feedforward neural
network for detection of multiple DoS, DDoS and
reconnaissance attacks, carried out by IoT botnets by
analyzing the network traffic to various machines,
offering legitimate services. Such a neural model
would allow simpler and faster implementation of a
detection tool with a comparison to others more
complicated solutions, such as recurrent neural
networks and others.

In Section 2 the test database is described,
together with the mutual distribution of samples over
the features for classification, the general structure of
the classifier and algorithm for its optimization.
Section 3 contains the experimental results, which are
commented in Section 4. Conclusion is made in
Section 5.

II. METHODOLOGY AND APPROACH

A. Test database

The test database is developed by a group of
researchers from the University of New South Wales
in Canberra, Australia [1]. It contains records from
sessions among 4 simulated IoT bots, using Kali
Linux, infected by malware, that carries out both DoS
(Denial of Service) and DDoS (Distributed Denial of
Service) by TCP (Transmission Control Protocol),
UDP (User Datagram Protocol) and HTTP
(Hypertext Transfer Protocol), as well as
Keylogging, Data theft activities, OS Fingerprinting
and Sniffing. These bots generate malicious traffic to
an Ubuntu Server and Ubuntu Mobile, Windows 7,
and Metasploitable workstations from internal
network. Normal activities from the infected IoT
devices with their related normal network traffic are
also being captured by an Ubuntu Tap, corresponding
to simulated weather station, smart fridge, controlled
lights, automated garage door and an intelligent
thermostat, using the MQTT (Message Queuing
Telemetry Transport) protocol.

Ten features from the network traffic records are
extracted as most promising for spotting the
undergoing attacks – seq – sequence number of the
capturing software, min – minimal duration of a

record, mean – average duration of a record, max –
maximum duration of a record, state_number –
identifier for a feature state, N_IN_Conn_P_SrcIP –
number of incoming connections for a source IP
address, N_IN_Conn_P_DstIP – number of
incoming connections for a destination IP address,
srate – number of packets in a second between source
and destination node, drate – rate of packets between
destination and source node, and stddev – standard
deviation of the registered records.

The part of training samples in the current study
is 2934817, and the test samples are 733705. Class 0
corresponds to normal traffic, 1, 2, and 3 – to DoS
TCP, UDP, HTTP, respectively, 4, 5, and 6 – to
DDoS TCP, UDP, HTTP, respectively, 7 –
Keylogging, 8 – Data Exfiltration, 9 - OS
Fingerprinting, and 10 – Service Scan. Distribution
of training samples by class is given in Fig. 1, with a
similar proportion for the test set.

Fig 1: Distribution of the training samples by attack class

B. Distribution of features

The full set of 10 features need to be investigated as
a distribution over all samples from the test database
in order to determine the most influencing
components over the separation of the classes. One of
the simplified methods to accomplish this task is the
FreeViz [6]. It is multivariate visualization approach,
which makes use of simple physical interpretation of
charge interaction in space, based on generated forces
of attraction and repelling and the resulting
movement of the charges until stable configuration
with minimal potential energy is met [6]. Charges in
this instance are samples – those from different

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.84 Volume 16, 2022

E-ISSN: 1998-4464 677

classes are going apart from each other, and those
from one and the same class – towards a mutual
center. The final redistribution is presented in two-
dimensional space (2D projection), from where it
could be judged which components have the greatest
influence on the class discrimination. The
computational steps are based on the following
simple considerations - the force of interaction
between charge q1 and q2 is Fq1->q2. A charge
typically has the following components q = [q1, q2,
…, qn]. The corresponding n-dimensional point could
be projected in 2D by the matrix A with i-th row Ai =
[Ax

i, Ay
i], which will transform the i-th base

component to its x and y components in 2D [6]. So,
the sample will be transformed as q’ = qA, where qx
= sumi(eiAx

i) and qy = sumi(eiAy
i) [6]. If E is the

potential energy of the system and A – the work
associated with a movement of a charge by particular
force, then the following equations hold true [6]:

 𝑑𝐸 = 𝐴 = −𝑭𝑞1→𝑞2

𝑑𝒒′, (1)

 𝑭𝑞 = ∑ 𝑭𝑞1→𝑞2𝑞1≠𝑞2

, (2)

 𝑑𝐸 = − ∑ 𝑭𝑞𝑑𝒒′𝑞 , (3)

 𝑑𝐸 = − ∑ 𝑭𝑞(𝒒𝑑𝑨)𝑞 , (4)

 𝑑𝐸

𝑑𝐴𝑥
𝑖 = − ∑ 𝑭𝑞,𝑥𝑞𝑖

𝑞 . (5)

Analogous is the process to project data samples and
find the location of related feature axes over the
verticals, that is y in 2D. Then optimization is
performed using the Gradient Descent algorithm to
rotate all projected vectors, corresponding to selected
features, that they relate the most to the clusters of
samples in the same space of projection.

Using the FreeViz tool from the Orange data
mining software and passing all test samples, the
initial distribution in 2D with equal spread of features
along a circular pattern is given in Fig. 2.a.

After optimization by the FreeViz in 2D (Fig.2.b)
it is observed that the seq and N_IN_Conn_P_SrcIP
axes cover the least of changes over all samples. The
second feature is connected primarily to vectors,
belonging to class 1 attack (shown in red in the lower
right part of the figure), but with a small variance,
thought to be less informative than drate, srate and
N_IN_Conn_P_DstIP. This is the reason to select in
a second set of experiments to train and test a
classifier with only 8 features, omitting seq and
N_IN_Conn_P_SrcIP.

C. Proposed multilayer feedforward neural network

architecture

Taking into account the work of Koroniotis et al.
[1], where a Recurrent Neural Network with 7 hidden
layers is proposed for detecting multiple IoT based
network attacks, predominantly DDoS ones, an
alternative neural network structure is proposed
within this study. It is a feedforward neural network
with similar degree of complexity in number of
neurons, again with 7 hidden layers, but without the
recurrent connections in it (Fig. 3).

a

b

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.84 Volume 16, 2022

E-ISSN: 1998-4464 678

Fig 2: FreeViz representation of test data in 2D: a) initial
location of samples, b) after optimization (below is the color

legend for persistent classes)

The input layer (IL) consists of 10 connections for the
complete set of 10 features (f1, …, f10), which in one
of the tested variations of the network is reduced to 8
features. Then, follow the hidden layers – HL1, HL2,
…, HL7, and finally the output layer (OL) consists of
11 connections a0 – indicating normal traffic, and a1-
a10 – for the 10 types of attacks present in the
network.

Fig 3: Constructed multilayer neural network for detection of

IoT based network attacks

Feature components could be arranged as a vector
𝑓 = {𝑓1, 𝑓2, … , 𝑓𝑁1

}, where N1 is either 8 or 10. For all
the layers k = 1, …, 9, including the IL and the OL,
the weights of neurons also could be grouped in a
vector 𝑤𝑖

𝑘⃗⃗ ⃗⃗ ⃗⃗ = {𝑤1𝑖
𝑘 , … , 𝑤𝑁𝑘𝑖

𝑘 }. Following one of our
previous studies on discriminating network traffic to
malicious and normal one, using feedforward neural
networks [2], all neurons from the hidden layers are
preferred to have tangent hyperbolic (Tanh)
activation function, that is the function gk, k = 2, …,
8. Then, the resulting values from the output of each
neuron could also be represented as a vector 𝑜𝑘⃗⃗ ⃗⃗⃗ =

{𝑜1
𝑘, … , 𝑜𝑁𝑘

𝑘 }. It is expected during the training some
of the connections between neurons from adjacent
layers to be lost, and other – harden, but initially the
network is fully connected. The level of the resulting
signal from each neuron i in layer k could be found
according to the equation below [3]:

 𝑜𝑖

𝑘 = 𝑔𝑘 (ℎ𝑖
𝑘

) = 𝑔𝑘 (𝑤𝑖
𝑘⃗⃗ ⃗⃗ ⃗⃗ . о𝑘−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝑏𝑖

𝑘
) = 𝑏𝑖

𝑘 +

∑ 𝑤𝑗𝑖
𝑘𝑁𝑘

𝑗=1 𝑜𝑗
𝑘−1. (8)

In (8) hi

k is the weighted input for the same i-th
neuron from k-th layer, which could be also biased by
the component bi

k, associated alone with the same
neuron.

Each input vector 𝑓𝑖
⃗⃗⃗ has associated target value (or

label) ti, for i = 1, …, M. Comparing all output values

from the last layer (OL) oi
9 with designated target ti,

it is possible to evaluate the accuracy of
classification. Both the mean square (MSE) and the
root mean square (RMSE) errors could be employed
for integral evaluation in that process [3]:

 𝑀𝑆𝐸 =

1

𝑀
∑ (𝑜𝑖 − 𝑡𝑖)2𝑀

𝑖=1 , (9)

 𝑅𝑀𝑆𝐸 =
∑ (𝑡𝑖−𝑜𝑖)2𝑀

𝑖=1

∑ (𝑡𝑖−𝑜̅)2𝑀
𝑖=1

, (10)

where 𝑜̅ is the average output for the particular
class (attack).

The update of the weight for neuron j from layer
k, connected to neuron i, is done according to [4]:

 ∆𝑤𝑖𝑗

𝑘 = −𝛼
𝜕𝐸(𝑓)

𝜕𝑤𝑖𝑗
𝑘 = −𝛼𝛿𝑗𝑜𝑖, (11)

 𝛿𝑗 = 𝑔′𝑘 (ℎ𝑖

𝑘
) ∑ 𝑤𝑘𝑗𝛿𝑘𝑘 , (12)

where the sum in (12) covers all neurons, taking as
input the resulting value from the output of the j-th
neuron. In (11) f denotes current feature sample and
α is the learning rate.

D. Finding the optimal structure of the classifier

No precise rule exists for choosing the number of
neurons in the hidden layers of a feedforward neural
network with back propagation, in this instance NHL2,
NHL3, NHL4, NHL5, NHL6, NHL7, NHL8. In the current
study, an iterative approach is selected with step-wise
increase of these numbers, according to Fig. 4.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.84 Volume 16, 2022

E-ISSN: 1998-4464 679

Fig 4: Optimization algorithm of the neural network structure

Twelve implementations of the neural network of

the studied type are tested, having respectively 20-
30-30-50-70-70-90, 30-40-40-60-80-80-100 and 40-
50-50-70-90-90-110 neurons in the hidden layers.
Each variant is trained and tested once with 10 and
separately with 8 features – one time using the Scaled
Gradient Descent (SGD) algorithm and second time
– using the Adam optimization.

According to algorithm from Fig. 4, end of
training comes when either the MSE falls down to
0.0001 or the number of epochs reaches 1000.
Confusion matrices of the complete set of tested
neural networks are then compared - as per the
average proportion of the actual detected attacks, the
ability to discriminate attack vs. non-attack input and
also training and testing times are considered in order
to derive the optimal combination of number of
neurons from the hidden layers, plus the optimal set
of input features – either 8, or 10.

The single valued parameters, that could be
derived from confusion matrices are the True
Positives (TP), True Negatives (TN), False Positives
(FP), False Negatives (FN), Precision, Recall,
Specificity, F1-measure, Log-loss, and Classification
accuracy (CA) [5].

III. EXPERIMENTAL RESULTS
The following components of an IBM compatible
PC, used for experimentation, supported the
numerical simulations – a 4-core CPU Intel Xeon E5-
1620, working at 3.50 GHz, having 256 kB L1 cache,

1 MB – L2 and 10 MB – L3; 64 GB RAM; 2 TB
HDD. The operating system is Microsoft Windows
10 Professional, version 20H2. Visual programming
of the neural networks, together with the training,
validation and testing is done with the Orange v. 3.28
application.

The parameters of the neural networks that are
trained and tested within the current study are given
in Table 1. Regularization parameter for all
modifications is α = 0.0001 and the maximum
number of epochs for training is set to 1000.

Table 1: Neural networks parameters

Name Number
of

features

Training
algorithm

Number neurons by layers
from input to output

NN1 10 SGD 10-20-30-30-50-70-70-90-11
NN2 10 SGD 10-30-40-40-60-80-80-100-11
NN3 10 SGD 10-40-50-50-70-90-90-110-11
NN4 10 Adam 10-20-30-30-50-70-70-90-11
NN5 10 Adam 10-30-40-40-60-80-80-100-11
NN6 10 Adam 10-40-50-50-70-90-90-110-11
NN7 8 SGD 10-20-30-30-50-70-70-90-11
NN8 8 SGD 10-30-40-40-60-80-80-100-11
NN9 8 SGD 10-40-50-50-70-90-90-110-11
NN10 8 Adam 10-20-30-30-50-70-70-90-11
NN11 8 Adam 10-30-40-40-60-80-80-100-11
NN12 8 Adam 10-40-50-50-70-90-90-110-11

The ratio of discovered attacks during training as

a proportion of the actual ones, using the full set of
10 features for both the Adam and SGD algorithms
for all 3 tested neural networks, is given in Table 2.

Table 2: Proportion discovered attacks from the actual instances

from full training set validation at 10 features, in %
Attack NN1 NN2 NN3 NN4 NN5 NN6

0 93.8 93.5 89.2 88.9 93.0 81.1
1 95.8 97.0 98.5 95.7 95.2 98.1
2 100.0 100.0 100.0 100.0 100.0 100.0
3 86.1 78.8 82.3 81.5 94.1 84.1
4 96.1 95.6 93.5 95.1 95.6 94.9
5 100.0 99.9 99.9 99.9 99.9 100.0
6 89.6 92.5 73.3 91.1 72.4 96.9
7 0.0 52.5 66.1 86.4 66.1 88.1
8 0.0 0.0 0.0 0.0 16.7 50.0
9 56.4 54.4 56.7 55.2 57.3 39.4

10 96.3 96.1 96.1 93.8 95.2 98.9
All 74.0 78.2 77.8 80.7 80.5 84.7

In the same time, the resulting proportions over

the training set, when using only 8 of the 10 features
are given in Table 3.

Table 3: Proportion discovered attacks from the actual instances

from full training set validation at 8 features, in %
Attack NN7 NN8 NN9 NN10 NN11 NN12

0 73.8 87.0 79.5 57.8 88.6 53.2
1 76.9 76.7 78.3 73.6 71.8 73.3
2 99.7 99.8 99.7 99.6 99.9 99.5
3 35.3 37.1 38.9 80.6 27.6 30.4
4 97.5 94.6 95.9 98.2 98.2 96.2
5 99.9 99.7 99.9 99.9 99.4 99.4
6 34.4 31.8 42.4 37.8 64.0 33.5

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.84 Volume 16, 2022

E-ISSN: 1998-4464 680

7 0.0 16.9 1.7 0.0 10.2 18.6
8 0.0 0.0 0.0 0.0 0.0 0.0
9 1.7 5.1 5.0 4.9 4.2 5.0

10 99.0 99.0 98.9 98.3 96.5 97.2
All 56.2 58.9 58.2 59.2 60.0 55.1

Testing of the trained models over the complete

test set leads to proportions of correctly discovered
attacks to all by types, shown in Table 4, when using
10 features.

Table 4: Proportion discovered attacks from the actual instances

from full testing set validation at 10 features, in %
Attack NN1 NN2 NN3 NN4 NN5 NN6

0 86.0 88.8 88.8 85.0 91.6 80.4
1 95.3 97.0 96.3 95.7 95.2 98.0
2 100.0 100.0 100.0 100.0 100.0 99.9
3 65.8 79.1 90.7 84.1 90.4 83.4
4 96.0 95.6 96.2 95.2 95.6 94.9
5 99.9 99.9 100.0 99.9 99.9 100.0
6 50.7 88.7 87.2 92.1 68.5 95.6
7 0.0 50.0 57.1 92.9 57.1 92.9
8 0.0 0.0 0.0 0.0 0.0 0.0
9 42.1 54.9 56.1 55.6 57.6 40.2

10 98.1 96.2 96.4 93.9 95.1 98.9
All 73.4 85.0 86.9 89.4 85.1 88.4

The results of discriminating attacks from the

records in the test set, employing 8 features, are given
in Table 5.

Processing times of training and testing on both
the train and test set are presented in Table 6.

Classification accuracy (CA), F1-measure,
Precision, Recall, LogLoss and Specificity, obtained
from working with the test set could be seen in Table
7.

As described in the discussion bellow, the optimal
configuration for 10 features is selected from NN5,
and for 8 features – for NN11. The confusion matrices
from classification over the test set are shown in Fig.
5 and Fig. 6, respectively.

Table 5: Proportion discovered attacks from the actual instances

from full testing set validation at 8 features, in %

Attack NN7 NN8 NN9 NN10 NN11 NN12
0 73.8 87.0 79.5 57.8 88.6 53.2
1 76.9 76.7 78.3 73.6 71.8 73.3
2 99.7 99.8 99.7 99.6 99.9 99.5
3 35.3 37.1 38.9 80.6 27.6 30.4
4 97.5 94.6 95.9 98.2 98.2 96.2
5 99.9 99.7 99.9 99.9 99.4 99.4
6 34.4 31.8 42.4 37.8 64.0 33.5
7 0.0 16.9 1.7 0.0 10.2 18.6
8 0.0 0.0 0.0 0.0 0.0 0.0
9 1.7 5.1 5.0 4.9 4.2 5.0

10 99.0 99.0 98.9 98.3 96.5 97.2
All 56.2 58.9 58.2 59.2 60.0 55.1

Table 6: Neural networks processing times
Neural

Network
Training time,

sec
Testing over
train set, sec

Testing over
test set, sec

NN1 60750.79 152.92 30.69
NN2 52097.14 223.74 40.53
NN3 63164.43 143.01 36.65
NN4 20379.68 130.45 40.61
NN5 36476.55 155.19 40.72
NN6 44199.82 155.40 49.26
NN7 42569.97 179.38 29.90
NN8 28490.63 214.32 49.12
NN9 32927.37 196.71 44.46
NN10 13113.01 191.26 35.71
NN11 159480.7 167.50 51.29
NN12 15747.10 233.59 62.84

Table 7: Neural networks efficiency
Neural

Network
CA F1 Precision Recall LogLoss Specificity

NN1 0.9795 0.9793 0.9795 0.9795 0.0413 0.9954
NN2 0.9797 0.9796 0.9799 0.9797 0.0411 0.9956
NN3 0.9772 0.9771 0.9783 0.9772 0.0485 0.9956
NN4 0.9760 0.9761 0.9764 0.9760 0.0511 0.9951
NN5 0.9768 0.9768 0.9770 0.9768 0.0502 0.9950
NN6 0.9797 0.9792 0.9805 0.9797 0.0404 0.9959
NN7 0.9482 0.9450 0.9508 0.9482 0.1050 0.9842
NN8 0.9399 0.9371 0.9408 0.9399 0.1318 0.9823
NN9 0.9465 0.9438 0.9479 0.9465 0.1066 0.9841
NN10 0.9443 0.9410 0.9476 0.9443 0.1046 0.9825
NN11 0.9399 0.9361 0.9441 0.9399 0.1273 0.9808
NN12 0.9362 0.9329 0.9387 0.9362 0.1332 0.9805

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.84 Volume 16, 2022

E-ISSN: 1998-4464 681

Fig 5: Confusion matrix for NN5 from classification of the test set

Fig. 6: Confusion matrix for NN11 from classification of the test set

IV. DISCUSSION
The first observation, comparing the training
efficiency of SGD and Adam optimization at 10
features (Table 2), is that the classifiers, employing
SGD, achieve from 2.3% to 6.9% less correctly
predicted number of attacks, than those, using Adam.
When using 8 features, the difference is from 1.1% to
3%, after applying validation over the full training set
(Table 3). During testing with 10 features, Adam
leads to increase of correct prediction from 0.1% to
16% (Table 4), and for 8 features – from 1.1% to 3%

(Table 5). These results indicate that Adam could be
preferred in front of SGD for the particular task.

Training times are smaller for the Adam algorithm
– in the order between 2 and 3 times (Table 6). Yet,
this is another factor, that gives flavor towards the
selection of Adam optimization for future
implementations of classifiers for multiple network
attacks discrimination. The period, taken for full test
set classification, is comparable between Adam and
SGD, which means that the structures of the
classifiers are similar, with almost equal number of

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.84 Volume 16, 2022

E-ISSN: 1998-4464 682

preserved connections between neurons and thus
almost equal number of computations to accomplish.
Training by one or the other algorithm would not
significantly affect the processing speed of a real-
world module, embedded in a monitoring position
within the network.

Although the classification accuracy (CA) is
higher for smaller number of neurons in the hidden
layers for some of the realizations (Table 7), it is
worth noting that the number of correctly discovered
normal instances of network connections is highest
for the networks with middle number of neurons
(seen from confusion matrices in Fig. 5 and Fig. 6),
that is the configuration - 10-30-40-40-60-80-80-
100-11. This is true for both variants, employing 8
and 10 features. The maximal variation of CA for
Adam optimization is 0.0029 among the three
structures at 10 features and 0.0044 – at 8 features.
Thus, it is found that the optimal configurations for
10 and 8 features are NN5 and NN11, respectively.
Using 10 features leads to 0.0369 higher CA, or
3.93%. Similar are the proportions for the rest of the
accuracy parameters, presented in Table 7. It turns
out that is more difficult to spot normal traffic with 8
features – the correct rate of discovery of these
instances is 11.36% less (Fig. 5 and 6). On the other
hand, the training time of NN11 is almost twice less
than that of NN5, which means that in practical
scenarios with high critical demands for adaptation
speed (re-training) of the classifier, it would be
preferable to use the 8-feature implementation.

Looking at the most precise configuration, NN5,
the least discovered attacks are – 7 – with 57.1% of
the actual instances, 9 – with 57.6%, 6 – with 68.5%
and all the rest are above 90% with a modest rate of
90.4% for the 3rd type of attack and 100% - for the 2nd
(Fig. 5). One of the main reasons for this result is the
lower number of instances, corresponding to these
types of attacks. The complete network connections
and associated traffic ratio among various attacks is
however close to what is being observed during ral
DoS and DDoS activities, so these discovery rates
could be acknowledged as satisfactory.

Comparison between the Recurrent Neural
network (RNN), developed in [1], and NN5 with
regard to the DDoS attacks, implemented in the test
network environment, is presented in Table 9. The
number of layers and the number of hidden neurons
in the RNN are the same as those in NN5. Although
the CA is smaller with 0.0194, for all these attacks
NN5 performs better as per the F1-measure.

Table 9. Performance comparison between RNN, [1], and the
proposed classifier for DDoS HTTP, TCP and UDP

Parameter CA Precision Recall F1

DDoS HTTP,
RNN [1] 0.9932 0.9930 0.9970 0.0147

DDoS HTTP,
Proposed 0.9998 0.8742 0.6847 0.7679

DDoS TCP,
RNN [1] 0.9999 0.9999 0.9999 0.0105

DDoS TCP,
Proposed 0.9805 0.9698 0.9565 0.9631

DDoS UDP,
RNN [1] 0.9999 0.9999 0.9999 0.0063

DDoS UDP,
Proposed 0.9996 0.9997 0.9989 0.9993

In Table 10, it could be seen similar results for the

DoS attacks – NN5 has smaller CA with 0.0177,
compared to RNN, for the TCP flood, but again F1 is
much higher for all considered instances.

Table 10. Performance comparison between RNN, [1], and the

proposed classifier for DoS HTTP, TCP and UDP
Parameter CA Precision Recall F1

DoS HTTP,
RNN [1] 0.9806 0.9898 0.9845 0.0314

DoS HTTP,
Proposed 0.9998 0.7576 0.9036 0.8242

DoS TCP,
RNN [1] 0.9999 0.9999 0.9999 0.0713

DoS TCP,
Proposed 0.9822 0.9429 0.9521 0.9475

DoS UDP,
RNN [1] 0.9999 0.9999 0.9999 0.0126

DoS UDP,
Proposed 0.9996 0.9990 0.9997 0.9993

Table 11 reveals resulting accuracy in

discriminating all remaining types of attacks by the
proposed multilayer feedforward neural network,
which tends to be higher than that of the RNN, with
the Service Scan case, where both classifier perform
almost equally.

Given all resulting parameters for accuracy from
Tables 9-11 and the fact that the feedforward neural
network has a simpler structure than the RNN, where
recurrent connections are introduced for some of the
neurons, that is taking more time for training and to
perform the calculations at the classification stage,
the proposed here NN5 could be considered more
efficient classifier.

Table 11. Performance comparison between RNN, [1], and the
proposed classifier for OS Fingerprinting, Service Scan, Data

Exfiltration and Keylogging
Parameter CA Precision Recall F1

OS Finger,
RNN [1] 0.9917 0.9984 0.9931 0.0587

OS Finger,
Proposed 0.9952 0.8325 0.9505 0.8876

Service Scan,
RNN [1] 0.9957 0.9986 0.9971 0.2159

Service Scan,
Proposed 0.9952 0.8342 0.9515 0.8890

Data Exfilt.,
RNN [1] 0.9875 0.0000 0.0000 0.0000

Data Exfilt.,
Proposed 0.9966 0.6871 0.5755 0.6264

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.84 Volume 16, 2022

E-ISSN: 1998-4464 683

Keylogging,
RNN [1] 0.9873 0.9853 0.9178 0.0021

Keylogging,
Proposed 0.9999 1.0000 0.5714 0.7272

V. CONCLUSION
In this paper a new implementation of a feedforward
multilayer neural network with backpropagation is
proposed for classification of IoT-based DoS, DDoS
and other malicious network activities. Wide variety
of tests prove the Adam optimization procedure as
more efficient than the Scaled Gradient Descend
algorithm. Tangent hyperbolic activation function
tends to be suitable for all neurons from the hidden
layers. Both the training and classification times
suggest the applicability of the neural model in real-
word applications. Using 8, less informative features,
of the complete set of 10 features, seems a balanced
solution with regard to classification accuracy, which
could speed up the training process at least twice.
Some of the attacks, such as Keylogging and OS
Fingerprinting, given the significantly lower
intensity of generated traffic, are more difficult to
discover with around 57% detection rate. Additional
modifications of the classifier are needed, possibly,
incorporating it in a stacked realization with other
classifiers in order to catch similar activities, equally
well with the more intense flood attacks.

REFERENCES

[1] Koroniotis, N., Moustafa, N., Sitnikova, E.,
Turnbull, B., Towards the Development of
Realistic Botnet Dataset in the Internet of
Things for Network Forensic Analytics: Bot-IoT
dataset. Future Generation Computer Systems,
Vol. 100, November 2019, pp. 779-796.

[2] ur Rehman, S., Khaliq, M., Imtiaz, S. I., Rasool,
A., Shafiq, M., Javed, A. R., ... & Bashir, A. K.,
DIDDOS: An approach for detection and
identification of Distributed Denial of Service
(DDoS) cyberattacks using Gated Recurrent
Units (GRU). Future Generation Computer

Systems, vol. 118, pp. 453-466, 2021.
[3] Nazih, W., Hifny, Y., Elkilani, W. S., Dhahri,

H., Abdelkader, T., Countering DDoS Attacks
in SIP Based VoIP Networks Using Recurrent
Neural Networks. Sensors, vol. 20, no. 20, 5875,
2020.

[4] Chaudhary, P., Gupta, B. B., DDoS detection
framework in resource constrained Internet of
Things domain. In 2019 IEEE 8th Global

Conference on Consumer Electronics (GCCE),
pp. 675-67, October 2019.

[5] Ye, J., Cheng, X., Zhu, J., Feng, L., Song, L., A
DDoS attack detection method based on SVM in
software defined network. Security and

Communication Networks, vol. 2018, 9804061,
2018.

[6] Sahoo, K. S., Tripathy, B. K., Naik, K.,
Ramasubbareddy, S., Balusamy, B., Khari, M.,
Burgos, D., An evolutionary SVM model for
DDOS attack detection in software defined
networks. IEEE Access, vol. 8, pp. 132502-
132513, 2020.

[7] Alguliyev, R. M., Aliguliyev, R. M.,
Abdullayeva, F. J., The improved LSTM and
CNN Models for DDoS attacks prediction in
social media. International Journal of Cyber

Warfare and Terrorism (IJCWT), vol. 9, no. 1,
pp. 1-18, 2019.

[8] Li, Y., Lu, Y., LSTM-BA: DDoS detection
approach combining LSTM and Bayes. In 2019

Seventh International Conference on Advanced

Cloud and Big Data (CBD), pp. 180-185, 2019.
[9] Lu, G., Tian, X., An Efficient Communication

Intrusion Detection Scheme in AMI Combining
Feature Dimensionality Reduction and
Improved LSTM. Security and Communication

Networks, vol. 2021, 66310752021, 2021.
[10] Shurman, M., Khrais, R., Yateem, A., DoS and

DDoS Attack Detection Using Deep Learning
and IDS. International Arab Journal of

Information Technology, vol. 17, no. 4 A, pp.
655-661, 2020.

[11] Priyadarshini, R., Barik, R. K., A deep learning
based intelligent framework to mitigate DDoS
attack in fog environment. Journal of King Saud

University-Computer and Information Sciences,
2019

[12] Doriguzzi-Corin, R., Millar, S., Scott-Hayward,
S., Martinez-del-Rincon, J., Siracusa, D.,
LUCID: A practical, lightweight deep learning
solution for DDoS attack detection. IEEE

Transactions on Network and Service

Management, vol. 17, no. 2, pp.876-889, 2020.
[13] Ujjan, R. M. A., Pervez, Z., Dahal, K., Bashir,

A. K., Mumtaz, R., González, J., Towards sFlow
and adaptive polling sampling for deep learning
based DDoS detection in SDN. Future

Generation Computer Systems, vol. 111, pp.
763-779, 2020.

[14] Hussain, B., Du, Q., Sun, B., Han, Z., Deep
Learning-Based DDoS-Attack Detection for
Cyber–Physical System Over 5G Network.
IEEE Transactions on Industrial Informatics,
vol. 17, no. 2, pp. 860-870, 2020.

[15] Baek, U. J., Ji, S. H., Park, J. T., Lee, M. S.,
Park, J. S., Kim, M. S., DDoS attack detection

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.84 Volume 16, 2022

E-ISSN: 1998-4464 684

on bitcoin ecosystem using deep-learning. In

2019 20th Asia-Pacific Network Operations and

Management Symposium (APNOMS), pp. 1-4,
September 2019.

[16] Ahuja, N., Singal, G., Mukhopadhyay, D.,
DLSDN: Deep learning for DDOS attack
detection in software defined networking. In

2021 11th International Conference on Cloud

Computing, Data Science & Engineering

(Confluence), pp. 683-688, January 2021.
[17] Yuan, X., Li, C., Li, X. DeepDefense: identifying

DDoS attack via deep learning. In 2017 IEEE
International Conference on Smart Computing

(SMARTCOMP), pp. 1-8, May 2017.
[18] Demšar, J., Leban, G., Zupan, B. FreeViz — An

intelligent multivariate visualization approach to
explorative analysis of biomedical data. Journal

of biomedical informatics, vol. 40, no. 6, pp.
661-671, 2007.

[19] Ivanova, V., Tashev, T., Draganov, I., Detection
of IoT based DDoS Attacks by Network Traffic
Analysis using Feedforward Neural Networks.
WSEAS Transactions, 2021 (under review).

[20] Rhys, H., Machine Learning with R, Tidyverse,

and MLR, Manning Publications, 2020.
[21] Abe, S., Pattern Classification: Neuro-Fuzzy

Methods and their Comparison, Springer-
Verlag, 2001.

[22] Kolo, B., Binary and Multiclass Classification,
Weatherford Press, 2011.

Creative Commons Attribution

License 4.0 (Attribution 4.0

International, CC BY 4.0)

This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.84 Volume 16, 2022

E-ISSN: 1998-4464 685

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

