
 

 

  

 

 

 

 

 

 

I. INTRODUCTION 

OMPANIES across various industries have been 

archiving data in their own required format and sizes. 

Retrieving Statistical, Analytical and other various forms 

information require high amount of processing of large size 

raw data, which is a costly task in terms of resource and time 

[7]. Present cloud based product having data distributed across 

several nodes uses MapReduce [4] framework for the 

processing of data with a certain level of optimization. 

MapReduce is a parallel programming model which is very 

efficient for processing large data set across multiple core 

machine or nodes of a cluster. It is customizable so that one 

can implement their own logic for information retrieval. The 

workflow developed upon MapReduce achieves higher 

performance than traditional solutions. MapReduce model is 

based on two primary process map (Mapper) and reduce 

(Reducer), accompanied by combiner and finalize for 

performing reduction at map phase and operation on the result 

of reduce phase respectively. Analysis of raw data is carried 

out by workflow, which consists of several mapreduce jobs. 

The map task/phase is performed on either the raw data or on 

the result of previous mapreduce jobs. This phase performs 

calculations defined by the user and generates a key value pair 

as an intermediate data. The key and value represent a relation 

 
 

 

similar to a hash map in a programming construct. The map 

phase can emit zero or more times and same key with different 

values.  

Map: 

 

 Raw data / Result of map reduce job                     {key, value} 

The result of mapping phases is the intermediate data which  

are then passed to reduce phase. The intermediate data is a list 

 of values corresponding to unique key. 

 

Intermediate data: 

{key1, value1} 

{key2, value2}         {key1, [value1, value3]} 

{key1, value3}         {key2, [value2, value4]} 

{key2, value4} 

On reduce phase the user defined reduce function is performed  

on intermediate data. This can be ranging from sum, average,  

standard deviation to predictive analysis of values  

corresponding to the unique key. The result of reduce phase  

generates the same or different type of key with the result of  

the processed value list. 

 

Reduce: 

{key, [value1, vaue2]}         {key3, value} 

In mapreduce framework the intermediate data generated is  

being deleted currently, so any mapreduce has to perform  

operation on raw data frequently. This paper focuses on 

storing and re-using the intermediate data and performing 

 mapreduce more efficiently to generate the required output. 

 

This was an introductory section to mapreduce framework 

describing its general execution and elements. Section II 

introduces how intermediate data are handled in MongoDB.   

Section III presents the proposed methodology. Section IV 

shows results of existing and proposed methodology. Section 

V is the analysis of experiment comparing existing system and 

proposed methodology. Section VI concludes this paper and 

present brief introduction to future work to be carried out. 

Lastly, we provide the list of references. 
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 Abstract—Data of any kind structured, unstructured or 

semistructured is generated in large quantity around the 

globe in various domains. These datasets are stored on 

multiple nodes in a cluster. MapReduce framework has 

emerged as the most efficient technique and easy to use 

for parallel processing of distributed data. This paper 

proposes a new methodology for mapreduce framework 

workflow. The proposed methodology provides a way to 

process raw data in such a way that it requires less 

processing time to generate the required result. The 

methodology stores intermediate data which is generated 

between map and reduce phase and re-used as input to 

mapreduce. The paper presents methodology which 

focuses on improving the data reusability, scalability and 

efficiency of the mapreduce framework for large data 

analysis. MongoDB 2.4.2 is used to demonstrate the 

experimental work to show how we can store and reuse 

intermediate data as a part of mapreduce to improve the 

processing of large datasets.  
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II. INTERMEDIATE DATA IN MAPREDUCE 

FRAMEWORK 

Large dataset requires multilevel and multipath 

mechanism for computation. Workflow is formed composed of 

number of map reduce task. In a workflow the data generated 

by one mapreduce job is input to another and so on. It is found 

that several mapreduce jobs of different workflow are repeated 

over the raw data. This kind of execution is found in analysis, 

logging, transaction, image processing and other different 

types of complex task. As the mapreduce jobs are repeated, 

same intermediate data is generated which are either deleted or 

stored but not used. The intermediate data is a set for key 

value pair where key is unique and the value corresponding to 

the key is a list of values emitted by the map phase. The 

intermediate data is lost if its size is limited to temporary 

storage else is written to disk [2]. This intermediate data is 

then passed to reduce phase. Further, in this section follows 

MongoDB architecture and intermediate data in the mapreduce 

framework in MongoDB. 

 
Raw data collection 

{ 

city : “A”, 

pop:300 

} 

{ 

city :”B”, 

pop:403 

} 

{ 

city :”C”, 

pop:100 

} 

{ 

city :”B”, 

pop:32 

} 

  

                  Query 

 

{ 

city : “A” , 

 pop300 

} 

{ 

city :”B”, 

pop:403 

} 

{ 

city :”B”, 

pop:32 

} 

 

                        Map 

           {  “A” : 300  }          {  “B” :  [403,32]  } 

 

                               Reduce             Reduce 

 

        { _id:”A”,value:300 } { _id :”B” , value:435 } 

      
     Resultant Collection 

 

Fig 1. MapReduce operation in MongoDB. 

 

A. MongoDB and MapReduce Framework 

 

    MongoDB is a NoSQL document-oriented database system 

[9]. MongoDB uses a memory map file that directly map disk 

data file to a memory byte array where data accesses and 

processing is carried out. In MongoDB “database” are 

represented in a similar pattern as RDBMS, incorporating 

various other objects like tables, indexes, triggers etc. Tables 

in MongoDB are referred as “collection”, each can have zero 

or more record which is referred as “document”. Columns in 

RDBMS have “field” as their counterpart in MongoDB. 

 

MapReduce in MongoDB increases performance and 

utilization of resource [8]. Figure 1 shows a complete 

mapreduce operation in mongodb. It is a two-step process, 

map and reduce. On submission of user defined functions map 

and reduce to mapReduce, firstly map task is performed 

followed by reduce task. The map task processes either every 

document of the given collection or set of documents based on 

the specified query result. The map function emits key and its 

related value obtained during processing, this is at document 

level so there will be bunch of key-value pair, with the 

possibilities of pair having same named key with different 

values. These emitted pairs are stored in in-memory as 

temporal data and on memory size overflow they are stored on 

local disk. Figure 2 shows the existing mechanism of map 

phase. In reduce phase the reduce function performs a remote 

procedure call to mapper nodes to gather the intermediate data 

which is a pair of key and corresponding list of values. After 

the values are transferred from mapper node the user defined 

code processes these values for aggregation, statistical or 

analysis and the result is stored on a specified output 

collection. Figure 3 shows the existing mechanism of reduce 

phase. 
 

                 

 

             . 

           . 

       

 

 

 

          

 {key 1, value 1} 

 

 

 

 

 

 

{key 2, value 2} 

 

              

 

 

             Emitted Bunch of 

            {key 2, list (value 2)} 

 

 

 

 

 

     

   

     
                                    RPC         

         
                    {key2, list (value2)}  

 

 

 
                        {key3, value 3}  

 

 
 

Fig 3. Existing Reduce Phase 

 

B. Intermediate Data in MongoDB 
 

The intermediate data are generated between the map and 

reduce phase. In mapreduce the reduce function is performed 

        Record 1 

          Record 2 

          Record N 

          
Map 

            In - Memory 

             Local Disk 

Fig 2. Existing Map phase 

Local Disk 

of Mapper Node 

 

    Output Collection 

Reduce 
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only after all map tasks of job are performed. At this point the 

data emitted by map is sent to the reducer. During this transfer 

the data from different nodes are collected and values of 

identical key are appended to list corresponding to the key, 

having the form:  

{key,  list(value)} 

 

This pairs are stored in-memory and on overflow are 

placed on disk. They are then sorted based on key and sent to 

corresponding reducers [3]. 

 

C. Limitations 

 

  The mapreduce framework defines a job, a complex 

analytical task is performed as a workflow which is composed 

of number of mapreduce jobs. On daily basis several 

workflows are initiated in a company. Some of the jobs in are 

common among workflows. This leads to processing of same 

raw data again among different workflow. 

 

The proposed methodology focuses on following areas of 

improvement in mapreduce framework: 

 

1) Input Size: Processing large number of records. 

 

2) Processing Time: Complex processing of data for emitting 

key value pair in map phase increases the overall time of 

workflow. 

 

3) Intermediate Data: Generated intermediate data left 

unused on disk. 

 

III. PROPOSED METHODOLOGY 
 

The proposed methodology addresses the limitations 

described in section II. Performing complex calculations on 

raw data requires some mapreduce jobs to be repeated at some 

point in workflows affecting overall execution time, the 

proposed methodology uses a comparison of stored required 

pattern [6] with the minimal set of records of the stored 

intermediate data collection, which on satisfying the condition 

alters the map phase for the actual reduce phase to reduce the 

processing as well as the size of inputs. Thus a decision 

mechanism is established at the start of mapreduce job to 

decide which set of data and map task to use as an input to the 

job [2]. 

Figure 4 and 5 shows the conceptual view of the proposed 

methodology. Using this methodology requires less processing 

with raw dataset, only on first computation and updating of the 

dataset we perform mapreduce directly on raw dataset. On the 

direct computation on the raw dataset we store [3] or merge 

the intermediate dataset in a separate collection which are 

likely to be used frequently in the future as an input pattern to 

reduce phase and also compute the reduce task.  

This methodology is useful for repetitive jobs. The map 

task and collection on which it is to be performed jobs are 

decided based on processing to be carried out over the sample 

records of the raw data. This is like a pattern recognition 

process [5]. This is carried out by applying mapreduce with 

reduce phase just returning the emitted elements of the map 

phase. The output is compared with the required pattern. On 

success we alter the map function implantation and collection 

(collection having intermediate data) which provides same 

data as we would have found using mapreduce on raw data 

collection. Thus the input changes to intermediate collection 

and implementation of map phase just becomes re emitting the 

key and values from list corresponding to the key which 

requires much less processing and the reduce task receives the 

same input so output as required receives the same input so 

output as required. 
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                 .                            Decision Making 

                 . 

 

 

                 {key, list(value)} 

 

 

 

                 {key1, value1}     

 

 

 

 

                             

  {key2, value2}     

                

              Storing required  

               {key2, list (value2)}   

       

 

  To reduce phase 

 

Fig 4. Proposed methodology for map phase 

 

 

 

                   

   
 

       

   RPC         

                                            {key2, list (value2)}  
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Fig 5. Reduce Phase of proposed system. 
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Algorithm 1 Store intermediate data 

 

/* map function*/ 

m <= function () { 

/* 

   In – between calculation  

*/ 

        emit (key, this.value); 

} 

/* reduce function*/ 

r <= function (c, p) { 

 return p; 

} 

db.rawdatacollection.mapReduce (m, r 

   { 

     out: intermediate data collection 

   } 

); 

 

Algorithm 1 shows the method how to store intermediate 

data using mapreduce. The method comprises of map and 

reduces functions where the map function can have 

implementation focusing on that results that are commonly 

generated in the form of intermediate data in mapreduce 

workflow. The reduce function here simply returns the list of 

values captured as input for a key. MapReduce is performed 

on collection, storing raw data and the result is stored in a 

separate collection for intermediate dataset. 

 

Algorithm 2 Decision making on raw data 

 

m <= user defined map function 

r   <= user defined reduce function 

db.rawdatacollection.mapReduce (m, r, 

    { 

 out: scratch collection,  

 query: select sample records 

    } 

); 

If (output: result satisfies the required pattern) 

/* alter map function and perform mapreduce on 

intermediate data collection*/ 

newM <= (function processing intermediate data    

emit key value pair) 

db.intermediatecollection.mapReduce (newM, r 

       { 

   out: resultant collection 

       } 

) ; 

else 

/* perform mapreduce on raw data collection directly*/ 

db.rawdatacollection.mapReduce (m, r, 

         { 

 out: resultant collection 

         } 

); 

 

 

mapReduce syntax in MongoDB:  

 

db.collectionName.mapReduce ( 

mapFunction, 

 reduceFunction, 

 { 

        out: { 

                                   <action>: <collectionName> 

      [, db: <dbName>] 

      [, sharded: <boolean>] 

      [, nonAtomic: <boolean>] 

  }, 

      query: // clause to restrict records, 

      jsMode: <boolean>, 

      ... 

} 

); 

 

Algorithm 2 is the proposed method used for deciding 

which collection and mapping task to be applied for a 

mapreduce job. Initially map and reduce functions are defined 

as per user requirement, and then tested on very small number 

of documents of collection having the raw data. To restrict the 

sample size query parameter of mapReduce function can be 

used. This concept is similar to scratch database or temporary 

table in RDBMS. The output of this job is compared with the 

pattern which is the way how documents of intermediate data 

collection would be stored. If the pattern matches the 

document result of scratch collection we alter the collection 

and map function on which the mapreduce is to be performed. 

The mapreduce will now be executed on intermediate data 

collection and the implementation of map is changed such that 

every value of the list corresponding to the key is emitted as a 

key value pair. The reduce function is not changed so the 

output result and the collection where the result is to be stored 

remains the same. This effect of this is a very small operation 

is required to process the data at map phase which was taking 

comparatively more time for complex processing. Moreover 

the number of inputs document for job is less while 

intermediate collection is considered compared to raw data 

collection. New intermediate documents also merge or update 

with documents collection periodically for consistency. This is 

how the overall processing is improved leading to effective 

workflow. 

  

IV. RESULT OF EXPERIMENT 
 

This section addresses the experimental setup and the 

experiment performed using the existing and proposed 

methodology.  

 

A. Experimental Setup 

The experiment was performed using MongoDB 2.4.2 on 2 

GB RAM node. NetBeans IDE 7.1.2 was used for executing 

java application. The raw data was collection of documents 

providing city wise population for different states. Figure 6 

shows sample documents from the collection. 20 lakh 

documents were initially used for evaluation. The job is to find 
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total state wise population. Further are the results of the 

experiments carried out.  

 

{"city": "LOWER KALSKAG", "loc": [-160.359966, 

61.51377], "pop": 291, "state": "AK", "_id": "99626"} 

{"city": "MC GRATH", "loc": [-155.585153, 62.967153], 

"pop": 618, "state": "AK", "_id": "99627"} 

{"city": "MANOKOTAK", "loc": [-158.989699, 59.009559], 

"pop": 385, "state": "AK", "_id": "99628"} 

{"city": "FLAGSTAFF", "loc": [-111.574109, 35.225736], 

"pop": 26878, "state": "AZ", "_id": "86004"} 

{"city": "EUFAULA", "loc": [-85.165605, 31.905063], 

"pop": 14189, "state": "AL", "_id": "36027"} 

{"city": "DOZIER", "loc": [-86.366315, 31.506614], "pop": 

741, "state": "AL", "_id": "36028"} 

{"city": "PERRY", "loc": [-92.787976, 35.042732], "pop": 

648, "state": "AR", "_id": "72125"} 

{"city": "PERRYVILLE", "loc": [-92.847171, 34.970096], 

"pop": 3851, "state": "AR", "_id": "72126"} 

{"city": "PLUMERVILLE", "loc": [-92.620435, 35.157466], 

"pop": 1940, "state": "AR", "_id": "72127"} 

 
Fig 6.  Raw data documents (records) from the collection 

 

Firstly, the mapreduce was executed on the raw data 

collection directly. The execution input size and time size 

calculated is presented in Figure 7. Same required job was 

performed using the proposed methodology where first the 

intermediate data is stored in separate collection and then 

before performing the required job check is made that if the 

pattern of intermediate data exists if true, we modify the map 

implementation with reduce implementation same as that used 

in existing systems and calculate the input size and time taken. 

Figure 8 shows the proposed methodology result.  

The time taken for retrieving sample results from the 

intermediate data collection and comparing is 250ms. Thus, 

combining processing time of mapreduce using intermediate 

data and time for pattern check is 10969ms which is less than 

processing time of existing methodology. Input size is half of 

the size used in existing methodology. 

 

{ 

        "result" : "result", 

        "timeMillis" : 39056, 

        "counts" : { 

                "input" : 2000000, 

                "emit" : 2000000, 

                "reduce" : 100000, 

                "output" : 100000 

        }, 

        "ok" : 1, 

} 
Fig 7. Input size and processing time in existing system. 

 

 

 

 

 

 

 

{ 

        "result" : "Intresult", 

        "timeMillis" : 10719, 

        "counts" : { 

                "input" : 100000, 

                "emit" : 2000000, 

                "reduce" : 100000, 

                "output" : 100000 

        }, 

        "ok" : 1, 

} 
Fig 8. Input size and processing time in proposed methodology. 

 
 

V. ANALYSIS OF EXISTING SYSTEM AND PROPOSED 

METHODOLOGY. 

The evaluation of proposed methodology was performed 

taking the aggregation experiment. This experiment aim is to  

compare the performance of existing system and proposed  

model, calculating output with new intermediate dataset and 

 reducing the size of input documents for generating the same  

output as using the raw data documents. 

 

A. Intermediate Data and Result in Existing System 

 

Firstly mapreduce was carried out on the documents of 

raw data collection directly and output was stored on resultant 

collection. Repeatedly performing the task for same map and 

different reduce implementation such as count resulted in same 

intermediate data but was used for internally between two 

phases. Thus the intermediate remained unused and processing 

was carried out on periodically increasing raw data affecting 

the processing time. 

 

B. Decision making based on pattern matching 

The decision making phase gets a single document from raw 

data and performs map only operation and stores the result in 

scratch database. The resultant output‟s keys are compared 

with the key of intermediate collection. 

Scratch collection: [_id, value] 

Intermediate collection: [_id, value] 

On matching the mapreduce operation of the workflow is  

performed on the intermediate collection where original map  

function is altered to logic given below: 

for(var index in this.value) { 

            emit (this.key ,this.value[index]); 

      } 

The reduce phase is kept same as the original one. This overall 

 reduces the processing incurred that would be large when  

executed on raw data collection. 
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C. Intermediate Data and Result in Proposed Methodology 

 

Experiment with proposed system at only first time the 

map function of map reduce is executed on raw data 

collection, the successive mapreduce jobs were first sent to 

decision making phase where Algorithm 1 is applied to the 

minimal number of document using query parameter and 

storing the resultant output in scratch collection. This result is 

compared with the required pattern, on success map function 

was altered and output was stored in intermediate collection. 

The collection was also altered on which the mapreduce to be 

performed. If the pattern did not match the normal execution 

was performed. In effect of this the input size decreased for 

same calculation, intermediate data got reused and processing 

time was also reduced compared to existing mapreduce 

workflow. Figure 9 shows the comparison of input size and 

processing time of existing and proposed methodology. 

The result of analysis: 

P=Number of documents in raw data collection. 

I=Number of documents of intermediate data. 

Size=Input size for map phase 

1. Time(I)  < Time(P) 

2. Size(I)   <  Size(P) 

 
TABLE I 

INPUT SIZE FOR EXPERIMENT AMONG SYSTEMS. 

Sr 

no. 

Existing System Proposed Methodology 

Number of 

documents 

Processing 

time (ms) 

Number of 

documents 

Processing 

time (ms) 

1 500000 9960 25000 3174 

2 1000000 20305 50000 5639 

3 1500000 30314 75000 8511 

4 2000000 39056 100000 10969 

 

Table I. shows the number of documents and 

corresponding processing time in mapreduce for existing and 

proposed methodology. We can see that there is a drop in the 

number of documents to be processed which would decrease 

the execution time. As the number of documents to be 

processed decreases there is a relative decrease in processing 

time this is shown in Figure 9 which shows the execution time 

between the systems. 

VI. CONCLUSION 

The proposed methodology and the experiment performed  

results that for large datasets the intermediate data storage and  

re-usage of can be highly efficient for mapreduce framework.  

The limitations described in section II(c) are overcome using 

 proposed mechanism. It was shown how changes in the map 

 side affect the processing. As per general implementation  

large calculations are carried out on map phase, so diverting 

 the implementation on collection having intermediate data  

bring down the complex processing to minimal processing  

leading to reuse of intermediate data and managing of input  

size with a reduction in overall processing time. The challenge 

 with the proposed model is that the intermediate data 

 produced by the mapper has some extra documents internally  

generated which exceed the size of the collection of  

intermediate dataset. To overcome this jsMode was enabled  

but it‟s limited to 5, 00,000 key of result set. This is due the  

current version of mongodb 2.4 that does not support for  

multiple valued in mapreduce. 

Future work for this is to perform same implementation  

combining Hadoop and MongoDB. Text search on  

Hadoop is the next challenge as there is a lot of potential areas  

to be worked upon to optimize and get accuracy in search in  

big data. 
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Fig 9. Number of documents (lakh) being processed and processing time (ms) 

in existing system and proposed methodology. 
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