

I. INTRODUCTION

OMPANIES across various industries have been

archiving data in their own required format and sizes.

Retrieving Statistical, Analytical and other various forms

information require high amount of processing of large size

raw data, which is a costly task in terms of resource and time

[7]. Present cloud based product having data distributed across

several nodes uses MapReduce [4] framework for the

processing of data with a certain level of optimization.

MapReduce is a parallel programming model which is very

efficient for processing large data set across multiple core

machine or nodes of a cluster. It is customizable so that one

can implement their own logic for information retrieval. The

workflow developed upon MapReduce achieves higher

performance than traditional solutions. MapReduce model is

based on two primary process map (Mapper) and reduce

(Reducer), accompanied by combiner and finalize for

performing reduction at map phase and operation on the result

of reduce phase respectively. Analysis of raw data is carried

out by workflow, which consists of several mapreduce jobs.

The map task/phase is performed on either the raw data or on

the result of previous mapreduce jobs. This phase performs

calculations defined by the user and generates a key value pair

as an intermediate data. The key and value represent a relation

similar to a hash map in a programming construct. The map

phase can emit zero or more times and same key with different

values.

Map:

 Raw data / Result of map reduce job {key, value}

The result of mapping phases is the intermediate data which

are then passed to reduce phase. The intermediate data is a list

 of values corresponding to unique key.

Intermediate data:

{key1, value1}

{key2, value2} {key1, [value1, value3]}

{key1, value3} {key2, [value2, value4]}

{key2, value4}

On reduce phase the user defined reduce function is performed

on intermediate data. This can be ranging from sum, average,

standard deviation to predictive analysis of values

corresponding to the unique key. The result of reduce phase

generates the same or different type of key with the result of

the processed value list.

Reduce:

{key, [value1, vaue2]} {key3, value}

In mapreduce framework the intermediate data generated is

being deleted currently, so any mapreduce has to perform

operation on raw data frequently. This paper focuses on

storing and re-using the intermediate data and performing

 mapreduce more efficiently to generate the required output.

This was an introductory section to mapreduce framework

describing its general execution and elements. Section II

introduces how intermediate data are handled in MongoDB.

Section III presents the proposed methodology. Section IV

shows results of existing and proposed methodology. Section

V is the analysis of experiment comparing existing system and

proposed methodology. Section VI concludes this paper and

present brief introduction to future work to be carried out.

Lastly, we provide the list of references.

Using Intermediate Data of Map Reduce for Faster

Execution

C

Shah Pratik Prakash, Pattabiraman V.

School of Computing Science and Engineering VIT University – Chennai Campus

Chennai, India

 Abstract—Data of any kind structured, unstructured or

semistructured is generated in large quantity around the

globe in various domains. These datasets are stored on

multiple nodes in a cluster. MapReduce framework has

emerged as the most efficient technique and easy to use

for parallel processing of distributed data. This paper

proposes a new methodology for mapreduce framework

workflow. The proposed methodology provides a way to

process raw data in such a way that it requires less

processing time to generate the required result. The

methodology stores intermediate data which is generated

between map and reduce phase and re-used as input to

mapreduce. The paper presents methodology which

focuses on improving the data reusability, scalability and

efficiency of the mapreduce framework for large data

analysis. MongoDB 2.4.2 is used to demonstrate the

experimental work to show how we can store and reuse

intermediate data as a part of mapreduce to improve the

processing of large datasets.

Keywords—MapReduce, Intermediate data

management, MongoDB, Architecture aware mining.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS
DOI: 10.46300/91013.2022.16.4 Volume 16, 2022

E-ISSN: 2074-1294 20

II. INTERMEDIATE DATA IN MAPREDUCE

FRAMEWORK

Large dataset requires multilevel and multipath

mechanism for computation. Workflow is formed composed of

number of map reduce task. In a workflow the data generated

by one mapreduce job is input to another and so on. It is found

that several mapreduce jobs of different workflow are repeated

over the raw data. This kind of execution is found in analysis,

logging, transaction, image processing and other different

types of complex task. As the mapreduce jobs are repeated,

same intermediate data is generated which are either deleted or

stored but not used. The intermediate data is a set for key

value pair where key is unique and the value corresponding to

the key is a list of values emitted by the map phase. The

intermediate data is lost if its size is limited to temporary

storage else is written to disk [2]. This intermediate data is

then passed to reduce phase. Further, in this section follows

MongoDB architecture and intermediate data in the mapreduce

framework in MongoDB.

Raw data collection

{

city : “A”,

pop:300

}

{

city :”B”,

pop:403

}

{

city :”C”,

pop:100

}

{

city :”B”,

pop:32

}

 Query

{

city : “A” ,

 pop300

}

{

city :”B”,

pop:403

}

{

city :”B”,

pop:32

}

 Map

 { “A” : 300 } { “B” : [403,32] }

 Reduce Reduce

 { _id:”A”,value:300 } { _id :”B” , value:435 }

 Resultant Collection

Fig 1. MapReduce operation in MongoDB.

A. MongoDB and MapReduce Framework

 MongoDB is a NoSQL document-oriented database system

[9]. MongoDB uses a memory map file that directly map disk

data file to a memory byte array where data accesses and

processing is carried out. In MongoDB “database” are

represented in a similar pattern as RDBMS, incorporating

various other objects like tables, indexes, triggers etc. Tables

in MongoDB are referred as “collection”, each can have zero

or more record which is referred as “document”. Columns in

RDBMS have “field” as their counterpart in MongoDB.

MapReduce in MongoDB increases performance and

utilization of resource [8]. Figure 1 shows a complete

mapreduce operation in mongodb. It is a two-step process,

map and reduce. On submission of user defined functions map

and reduce to mapReduce, firstly map task is performed

followed by reduce task. The map task processes either every

document of the given collection or set of documents based on

the specified query result. The map function emits key and its

related value obtained during processing, this is at document

level so there will be bunch of key-value pair, with the

possibilities of pair having same named key with different

values. These emitted pairs are stored in in-memory as

temporal data and on memory size overflow they are stored on

local disk. Figure 2 shows the existing mechanism of map

phase. In reduce phase the reduce function performs a remote

procedure call to mapper nodes to gather the intermediate data

which is a pair of key and corresponding list of values. After

the values are transferred from mapper node the user defined

code processes these values for aggregation, statistical or

analysis and the result is stored on a specified output

collection. Figure 3 shows the existing mechanism of reduce

phase.

 .

 .

 {key 1, value 1}

{key 2, value 2}

 Emitted Bunch of

 {key 2, list (value 2)}

 RPC

 {key2, list (value2)}

 {key3, value 3}

Fig 3. Existing Reduce Phase

B. Intermediate Data in MongoDB

The intermediate data are generated between the map and

reduce phase. In mapreduce the reduce function is performed

 Record 1

 Record 2

 Record N

Map

 In - Memory

 Local Disk

Fig 2. Existing Map phase

Local Disk

of Mapper Node

 Output Collection

Reduce

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS
DOI: 10.46300/91013.2022.16.4 Volume 16, 2022

E-ISSN: 2074-1294 21

only after all map tasks of job are performed. At this point the

data emitted by map is sent to the reducer. During this transfer

the data from different nodes are collected and values of

identical key are appended to list corresponding to the key,

having the form:

{key, list(value)}

This pairs are stored in-memory and on overflow are

placed on disk. They are then sorted based on key and sent to

corresponding reducers [3].

C. Limitations

 The mapreduce framework defines a job, a complex

analytical task is performed as a workflow which is composed

of number of mapreduce jobs. On daily basis several

workflows are initiated in a company. Some of the jobs in are

common among workflows. This leads to processing of same

raw data again among different workflow.

The proposed methodology focuses on following areas of

improvement in mapreduce framework:

1) Input Size: Processing large number of records.

2) Processing Time: Complex processing of data for emitting

key value pair in map phase increases the overall time of

workflow.

3) Intermediate Data: Generated intermediate data left

unused on disk.

III. PROPOSED METHODOLOGY

The proposed methodology addresses the limitations

described in section II. Performing complex calculations on

raw data requires some mapreduce jobs to be repeated at some

point in workflows affecting overall execution time, the

proposed methodology uses a comparison of stored required

pattern [6] with the minimal set of records of the stored

intermediate data collection, which on satisfying the condition

alters the map phase for the actual reduce phase to reduce the

processing as well as the size of inputs. Thus a decision

mechanism is established at the start of mapreduce job to

decide which set of data and map task to use as an input to the

job [2].

Figure 4 and 5 shows the conceptual view of the proposed

methodology. Using this methodology requires less processing

with raw dataset, only on first computation and updating of the

dataset we perform mapreduce directly on raw dataset. On the

direct computation on the raw dataset we store [3] or merge

the intermediate dataset in a separate collection which are

likely to be used frequently in the future as an input pattern to

reduce phase and also compute the reduce task.

This methodology is useful for repetitive jobs. The map

task and collection on which it is to be performed jobs are

decided based on processing to be carried out over the sample

records of the raw data. This is like a pattern recognition

process [5]. This is carried out by applying mapreduce with

reduce phase just returning the emitted elements of the map

phase. The output is compared with the required pattern. On

success we alter the map function implantation and collection

(collection having intermediate data) which provides same

data as we would have found using mapreduce on raw data

collection. Thus the input changes to intermediate collection

and implementation of map phase just becomes re emitting the

key and values from list corresponding to the key which

requires much less processing and the reduce task receives the

same input so output as required receives the same input so

output as required.

 .

 . Decision Making

 .

 {key, list(value)}

 {key1, value1}

 {key2, value2}

 Storing required

 {key2, list (value2)}

 To reduce phase

Fig 4. Proposed methodology for map phase

 RPC

 {key2, list (value2)}

 {key3, value 3}

Fig 5. Reduce Phase of proposed system.

Record 1

Record 2

Record N

Map

 Proposed

Algorithm

Collection of

intermediate

data

In-Memory

 Local Disk

 of Mapper Node

 Output Collection

Reduce

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS
DOI: 10.46300/91013.2022.16.4 Volume 16, 2022

E-ISSN: 2074-1294 22

Algorithm 1 Store intermediate data

/* map function*/

m <= function () {

/*

 In – between calculation

*/

 emit (key, this.value);

}

/* reduce function*/

r <= function (c, p) {

 return p;

}

db.rawdatacollection.mapReduce (m, r

 {

 out: intermediate data collection

 }

);

Algorithm 1 shows the method how to store intermediate

data using mapreduce. The method comprises of map and

reduces functions where the map function can have

implementation focusing on that results that are commonly

generated in the form of intermediate data in mapreduce

workflow. The reduce function here simply returns the list of

values captured as input for a key. MapReduce is performed

on collection, storing raw data and the result is stored in a

separate collection for intermediate dataset.

Algorithm 2 Decision making on raw data

m <= user defined map function

r <= user defined reduce function

db.rawdatacollection.mapReduce (m, r,

 {

 out: scratch collection,

 query: select sample records

 }

);

If (output: result satisfies the required pattern)

/* alter map function and perform mapreduce on

intermediate data collection*/

newM <= (function processing intermediate data

emit key value pair)

db.intermediatecollection.mapReduce (newM, r

 {

 out: resultant collection

 }

) ;

else

/* perform mapreduce on raw data collection directly*/

db.rawdatacollection.mapReduce (m, r,

 {

 out: resultant collection

 }

);

mapReduce syntax in MongoDB:

db.collectionName.mapReduce (

mapFunction,

 reduceFunction,

 {

 out: {

 <action>: <collectionName>

 [, db: <dbName>]

 [, sharded: <boolean>]

 [, nonAtomic: <boolean>]

 },

 query: // clause to restrict records,

 jsMode: <boolean>,

 ...

}

);

Algorithm 2 is the proposed method used for deciding

which collection and mapping task to be applied for a

mapreduce job. Initially map and reduce functions are defined

as per user requirement, and then tested on very small number

of documents of collection having the raw data. To restrict the

sample size query parameter of mapReduce function can be

used. This concept is similar to scratch database or temporary

table in RDBMS. The output of this job is compared with the

pattern which is the way how documents of intermediate data

collection would be stored. If the pattern matches the

document result of scratch collection we alter the collection

and map function on which the mapreduce is to be performed.

The mapreduce will now be executed on intermediate data

collection and the implementation of map is changed such that

every value of the list corresponding to the key is emitted as a

key value pair. The reduce function is not changed so the

output result and the collection where the result is to be stored

remains the same. This effect of this is a very small operation

is required to process the data at map phase which was taking

comparatively more time for complex processing. Moreover

the number of inputs document for job is less while

intermediate collection is considered compared to raw data

collection. New intermediate documents also merge or update

with documents collection periodically for consistency. This is

how the overall processing is improved leading to effective

workflow.

IV. RESULT OF EXPERIMENT

This section addresses the experimental setup and the

experiment performed using the existing and proposed

methodology.

A. Experimental Setup

The experiment was performed using MongoDB 2.4.2 on 2

GB RAM node. NetBeans IDE 7.1.2 was used for executing

java application. The raw data was collection of documents

providing city wise population for different states. Figure 6

shows sample documents from the collection. 20 lakh

documents were initially used for evaluation. The job is to find

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS
DOI: 10.46300/91013.2022.16.4 Volume 16, 2022

E-ISSN: 2074-1294 23

total state wise population. Further are the results of the

experiments carried out.

{"city": "LOWER KALSKAG", "loc": [-160.359966,

61.51377], "pop": 291, "state": "AK", "_id": "99626"}

{"city": "MC GRATH", "loc": [-155.585153, 62.967153],

"pop": 618, "state": "AK", "_id": "99627"}

{"city": "MANOKOTAK", "loc": [-158.989699, 59.009559],

"pop": 385, "state": "AK", "_id": "99628"}

{"city": "FLAGSTAFF", "loc": [-111.574109, 35.225736],

"pop": 26878, "state": "AZ", "_id": "86004"}

{"city": "EUFAULA", "loc": [-85.165605, 31.905063],

"pop": 14189, "state": "AL", "_id": "36027"}

{"city": "DOZIER", "loc": [-86.366315, 31.506614], "pop":

741, "state": "AL", "_id": "36028"}

{"city": "PERRY", "loc": [-92.787976, 35.042732], "pop":

648, "state": "AR", "_id": "72125"}

{"city": "PERRYVILLE", "loc": [-92.847171, 34.970096],

"pop": 3851, "state": "AR", "_id": "72126"}

{"city": "PLUMERVILLE", "loc": [-92.620435, 35.157466],

"pop": 1940, "state": "AR", "_id": "72127"}

Fig 6. Raw data documents (records) from the collection

Firstly, the mapreduce was executed on the raw data

collection directly. The execution input size and time size

calculated is presented in Figure 7. Same required job was

performed using the proposed methodology where first the

intermediate data is stored in separate collection and then

before performing the required job check is made that if the

pattern of intermediate data exists if true, we modify the map

implementation with reduce implementation same as that used

in existing systems and calculate the input size and time taken.

Figure 8 shows the proposed methodology result.

The time taken for retrieving sample results from the

intermediate data collection and comparing is 250ms. Thus,

combining processing time of mapreduce using intermediate

data and time for pattern check is 10969ms which is less than

processing time of existing methodology. Input size is half of

the size used in existing methodology.

{

 "result" : "result",

 "timeMillis" : 39056,

 "counts" : {

 "input" : 2000000,

 "emit" : 2000000,

 "reduce" : 100000,

 "output" : 100000

 },

 "ok" : 1,

}
Fig 7. Input size and processing time in existing system.

{

 "result" : "Intresult",

 "timeMillis" : 10719,

 "counts" : {

 "input" : 100000,

 "emit" : 2000000,

 "reduce" : 100000,

 "output" : 100000

 },

 "ok" : 1,

}
Fig 8. Input size and processing time in proposed methodology.

V. ANALYSIS OF EXISTING SYSTEM AND PROPOSED

METHODOLOGY.

The evaluation of proposed methodology was performed

taking the aggregation experiment. This experiment aim is to

compare the performance of existing system and proposed

model, calculating output with new intermediate dataset and

 reducing the size of input documents for generating the same

output as using the raw data documents.

A. Intermediate Data and Result in Existing System

Firstly mapreduce was carried out on the documents of

raw data collection directly and output was stored on resultant

collection. Repeatedly performing the task for same map and

different reduce implementation such as count resulted in same

intermediate data but was used for internally between two

phases. Thus the intermediate remained unused and processing

was carried out on periodically increasing raw data affecting

the processing time.

B. Decision making based on pattern matching

The decision making phase gets a single document from raw

data and performs map only operation and stores the result in

scratch database. The resultant output‟s keys are compared

with the key of intermediate collection.

Scratch collection: [_id, value]

Intermediate collection: [_id, value]

On matching the mapreduce operation of the workflow is

performed on the intermediate collection where original map

function is altered to logic given below:

for(var index in this.value) {

 emit (this.key ,this.value[index]);

 }

The reduce phase is kept same as the original one. This overall

 reduces the processing incurred that would be large when

executed on raw data collection.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS
DOI: 10.46300/91013.2022.16.4 Volume 16, 2022

E-ISSN: 2074-1294 24

C. Intermediate Data and Result in Proposed Methodology

Experiment with proposed system at only first time the

map function of map reduce is executed on raw data

collection, the successive mapreduce jobs were first sent to

decision making phase where Algorithm 1 is applied to the

minimal number of document using query parameter and

storing the resultant output in scratch collection. This result is

compared with the required pattern, on success map function

was altered and output was stored in intermediate collection.

The collection was also altered on which the mapreduce to be

performed. If the pattern did not match the normal execution

was performed. In effect of this the input size decreased for

same calculation, intermediate data got reused and processing

time was also reduced compared to existing mapreduce

workflow. Figure 9 shows the comparison of input size and

processing time of existing and proposed methodology.

The result of analysis:

P=Number of documents in raw data collection.

I=Number of documents of intermediate data.

Size=Input size for map phase

1. Time(I) < Time(P)

2. Size(I) < Size(P)

TABLE I

INPUT SIZE FOR EXPERIMENT AMONG SYSTEMS.

Sr

no.

Existing System Proposed Methodology

Number of

documents

Processing

time (ms)

Number of

documents

Processing

time (ms)

1 500000 9960 25000 3174

2 1000000 20305 50000 5639

3 1500000 30314 75000 8511

4 2000000 39056 100000 10969

Table I. shows the number of documents and

corresponding processing time in mapreduce for existing and

proposed methodology. We can see that there is a drop in the

number of documents to be processed which would decrease

the execution time. As the number of documents to be

processed decreases there is a relative decrease in processing

time this is shown in Figure 9 which shows the execution time

between the systems.

VI. CONCLUSION

The proposed methodology and the experiment performed

results that for large datasets the intermediate data storage and

re-usage of can be highly efficient for mapreduce framework.

The limitations described in section II(c) are overcome using

 proposed mechanism. It was shown how changes in the map

 side affect the processing. As per general implementation

large calculations are carried out on map phase, so diverting

 the implementation on collection having intermediate data

bring down the complex processing to minimal processing

leading to reuse of intermediate data and managing of input

size with a reduction in overall processing time. The challenge

 with the proposed model is that the intermediate data

 produced by the mapper has some extra documents internally

generated which exceed the size of the collection of

intermediate dataset. To overcome this jsMode was enabled

but it‟s limited to 5, 00,000 key of result set. This is due the

current version of mongodb 2.4 that does not support for

multiple valued in mapreduce.

Future work for this is to perform same implementation

combining Hadoop and MongoDB. Text search on

Hadoop is the next challenge as there is a lot of potential areas

to be worked upon to optimize and get accuracy in search in

big data.

0.25 0.5 0.75

5

1

10

15

20

0

5

10

15

20

25

Fig 9. Number of documents (lakh) being processed and processing time (ms)

in existing system and proposed methodology.

N
u

m
b

er
 o

f
d

o
cu

m
en

ts
 (

L
ak

h
)

Processing time (s)

3.1 5.6 8.5 9.9 10.9 20.3 30.3 39.0

 Existing System

 Proposed Methodology

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS
DOI: 10.46300/91013.2022.16.4 Volume 16, 2022

E-ISSN: 2074-1294 25

REFERENCES

[1] A. Espinosa, P. Hernandez, J.C. Moure, J. Protasio and A. Ripoll .

“Analysis and improvement of map-reduce data distribution in mapping

applications”. Published online: 8 June 2012 JSupercomput (2012)

62:1305-1317.

[2] Diana Moise, Thi-Thu-Lan Trieu, Gabriel Antoniu and Luc Bougé.

“Optimizing Intermediate Data Management in MapReduce

Computations”. CloudCP „11 April 10, 2011 Salzburg, Austria ACM

978-1-4503-0727-7/11/04.

[3] Iman Elghandour and Ashraf Aboulnaga. “ReStore: Reusing Results of

MapReduce jobs”. The 38th International Conference on Very Large

Data Bases, August 27th 31st 2012, Istanbul, Turkey. Proceedings of the

VLDB Endowment, Vol. 5, No. 6.

[4] J. Dean and S. Ghemawat. “MapReduce: Simplified data processing on

large clusters”. In Proc. OSDI, pages 137-150. 2004.

[5] Qiang Liu, Tim Todman, Wayne Luk and George A. Constantinides.

“Automatic Optimisation of MapReduce Designs by Geometric

Programming”. FPT 2009 IEEE.

[6] Rabi Prasad Padhy. “Big Data Processing with Hadoop-MapReduce in

Cloud Systems”. International Journal of Cloud Computing and Services

Science (IJ-CLOSER) Vol.2, No.1, February 2013, pp. 16~27 ISSN:

2089-3337.

[7] Raman Grover and Michael J. Carey. “Extending Map-Reduce for

Efficient Predicate-Based Sampling”. 2012 IEEE 28th International

Conference on Data Engineering.

[8] Ruxandra Burtica, Eleonora Maria Mocanu, Mugurel Ionut, Andreica,

and , Nicolae Ţăpuş. “Practical application and evaluation of no-SQL
databases in Cloud Computing”. 2012 IEEE. This paper is under

research grants PD_240/2010 (AATOMMS - contract no.

33/28.07.2010) from the PN II - RU program and ID_1679/2008

(contract no. 736/2009) from the PN II - IDEI program.

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS
DOI: 10.46300/91013.2022.16.4 Volume 16, 2022

E-ISSN: 2074-1294 26

