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Abstract—In this work, a superinfection model of two 

HIV strains was proposed. The proposed model was solved 

and interpreted using the Elzaki Transform Method 

(ETM). The proposed model presented some non-linear 

terms which are difficult to resolve using the ETM. Hence, 

we employed the Adomian Decomposition Method (ADM) 

to resolve the nonlinear terms. We derived an iterative 

scheme that was used to predict the behavior of the model. 

Results of data simulation showed that the population of 

healthy CD4+ T cells declined with respect to time in the 

presence of HIV strains. The viral loads for both viral 

strains are observed to be on a steady increase. The study 

reveals that ETM can be used to solve Superinfection 

models of HIV. The method is easier, more efficient, and 

more effective, and it converges faster to the solution when 

compared to other transform methods. We recommend 

that ETM can be applied to superinfection and co-

infection models of other infectious diseases. 

 

Keywords— Parameters, Superinfection, Variables, 

Viral strains 

I. INTRODUCTION 
cquired Immune Deficiency Syndrome (AIDS) is one of 
the diseases that have called for collaborating efforts of 
scientists, modelers, governments, and multinational 

organizations. The disease is caused by a virus called Human 
Immunodeficiency Virus (HIV). As the years go by, HIV 
keeps presenting new dimensions for study. One such area is 
that HIV has types, sub-types, and sub-subtypes, depending on 
their genetic composition. About 49 circulating recombinant 
forms (CRFs) are reported to exist, [1]. Emerging research has 
shown that an infected person with a viral strain can be re-
infected with a unique strain at another time after the 
 

 

establishment of the primary infection. This is what is termed a 
superinfection, [2]. 

The possibility of superinfection has been envisaged for 
many years, but poor and insufficient documentation of 
samples coupled with techniques for detecting it have 
constituted major setbacks until 2002 when the first case was 
reported. Superinfection occurs in several ways. It was 
reported that transmission takes place in men who have sex 
with men. Another study revealed superinfection in 
intravenous drug users, [2], [3]. Superinfection of seropositive 
wives was also reported by [4].  

HIV/AIDS is one of the leading epidemics in the world. 
About 38 million people globally were living with HIV while 
1.7 million people became newly infected with HIV in 2020, 
[5]. In Africa, more than 20 million people are living with HIV 
and more than 730,000 new HIV-1 infections still occur each 
year, [6]. One of the key areas that have become an area of 
interest to modelers is the fact that viruses have types, forms, 
and shapes. There are virus trains and each has a unique way 
of affecting the immune. HIV can be divided into type 1 (HIV-
1) and type 2 (HIV-2). Due to variation in the genes of HIV-1, 
HIV-1 is further divided into groups M (major), O (outlier), 
and N (non-M, non-O). Within group M, multiple unique 
subtypes and circulating recombinant forms have been 
identified, [2], [3].  

In [2], the authors proposed an HIV superinfection model of 
men who have sex with men. Their work focused on the 
stability analysis of the model. More so, the proposed model in 
[2], is an in vitro study. Another study, [7], developed 
superinfection models for bystander killing of uninfected cells, 
saturating dynamics of new infections, multiple target cell 
types, and HIV-induced T-cell activation. Analysis of the 
effects of HIV superinfection was carried out but the model 
was not solved.      

In this work, we propose an in vivo (within-host) model of 
HIV Superinfection. We aim to solve and interpret the HIV 
Superinfection model using the Elzaki Transform Method 
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against the use of other traditional methods such as the 
Laplace Transform, Taylor’s Series, Fourier Transform, and 
Differential Transform. The behavior of the model was 
predicted using the iterative scheme that was derived for the 
model.  

  
II. MODEL DEVELOPMENT AND DESCRIPTION 

An infected person with a viral strain can be infected with a 
unique strain at another time after the establishment of the 
primary infection. The interest here is to study the behavior of 
this system in the presence of two viral strains. Thus, an HIV 
Superinfection deterministic model was proposed in this work. 
The model comprises five classes dealing with cellular and 
viral populations. The susceptible population is the uninfected 
CD4+T cells, U, with source term and natural death rate, s1 
and μ respectively. The two viral strains are denoted by pV  

and sV  (which are the primary and superinfection viral strains 
respectively), with respective natural death rates, p  and s . 
The fourth and the fifth classes are the primarily infected 
CD4+T cells, pI  and superinfected CD4+T cells, sI . 
 

A. Basic Assumptions of the HIV Superinfection Model 

(i) Viral strains co-exist and co-circulate in the system. 
(ii) Superinfection by a distinct viral strain only takes place 
after the primary establishment of the primary infection by the 
first strain. 

Relying on the description and assumptions of the model 
above, we present the following expressions as the equations 
of the model. 

 UUVs
dt

dU
p   1                 (1) 

 pppsp

p
IIVUV

dt

dI
               (2) 

ssps
s IIV

dt

dI
                   (3) 

pppssspp

p
VUVININ

dt

dV
  )1(      (4) 

sspspsss
s VIVIN

dt

dV
              (5) 

A description of the variables is presented in Table I. 
Similarly, a description of the parameters is presented in Table 
II. 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE I. DESCRIPTION OF VARIABLES  
Symbols Variables 
U  Population of uninfected CD4+T cells 

pI  Population of CD4+T cells infected by viral 
strain 1 

sI  Population of CD4+T cells infected by viral 
strain 2 

pV  Population of viral strain 1 

sV  Population of viral strain 2 

pN  Number of viruses produced due to lysing of 
infected cells by the viral strain 

sN  Number of viruses produced due to lysing of 
infected cells by viral strain 2 

 
TABLE II. DESCRIPTION OF PARAMETERS  

Symbols Description  
1s  Source term for uninfected CD4+T cells 
  Natural death rate of uninfected CD4+T cells 

p  Natural death rate of CD4+T cells infected by 
viral strain 1 

s  Natural death rate of CD4+T cells infected by 
viral strain 2 

p  Natural death rate of viral strain 1 

s  Natural death rate of viral strain 2 
  Rate at which uninfected CD4+T cells are 

infected by viral strain 1 
  Rate at which primarily infected CD4+T cells 

are infected by viral strain 2 
  Rate at which viruses are produced from 

CD4+T cells infected by viral strain 1 
  Rate at which viruses are produced from 

CD4+T cells infected by viral strain 2 
 

III. THE ELZAKI TRANSFORM METHOD 
The Elzaki Transform Method (ETM) was proposed by [8]. 

The method can be used to solve both ordinary differential 
equations and partial differential equations. It is effective in 
deriving solutions of higher-order linear ordinary differential 
equations. It is an integral transform with a resemblance to the 
Laplace Transform, [9], [10]. Elzaki Transforms has united 
preserving properties. Thus, it is not necessary to resort to the 
frequency domain of a problem before applying the ETM to it. 
This is one of the merits of the ETM over other transforms. 
Furthermore, the method preserves the property of linearity, 
for it is itself linear. The solution obtained using this technique 
is expressed as an infinite series, [11].  

The ETM however has a demerit. It is not designed to 
handle difficulties that could be posed by nonlinear terms, 
hence the introduction of a decomposition method to 
decompose the nonlinear terms, [9]. We employed the 
Adomian Decomposition Method (ADM) to decompose the 
nonlinear terms in the model equations, [12].  
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The ETM is defined by, 

      21
0

,,,)( kkudtetfutfEuT u

t

 


       (6) 

Let A be an Elzaki transformable function, defined by  

    jkt
MetfkkMtfA  ,0,,: 21  and  

    ),(,)1,0[1 21 kkudtetfxift u

t

j
            (7) 

Let )(uT  be the Elzaki Transform of  tf  or 
   )(uTtfE  , then by integrating by parts, we obtain the 

following relations:  
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For details on Elzaki standard transforms of some functions, 
readers are referred to [11].  
 

i. Solution of the Model using ETM 
Here, we apply the Elzaki operator, ,E on the model (1) – 

(5). For convenience, the following notations were introduced: 
Let qU  , wI p  , xI s  , yVp  , zVs  , 

dN pp  ,   gNss  1  and cNss   
So that the model equation is now transformed into, 
   qqystq   1

'                (11) 

   qwzqytw p '               (12) 

   xwztx s '                 (13) 

   yqygxdwty p '             (14) 

   zdwcxtz s '                (15) 
Subject to the following initial conditions:  

,10)0(,10)0(,100)0(,1000)0(,2000)0(  zyxwq  
and with parameter values, 

01.0,05.0,05.0,01.0,02.0,51  cs p    

,04.0,,10,02.0,01.0,05.0  psps NN   

0001.0,04.0  ds and 49.0g . 
 
We apply the Elzaki operator, E ,  on (11) to obtain, 

    qqysEtqE   1
'               (16) 
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We now take the Elzaki inverse of  (17).  
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1nA  and 2nA  are the decomposers using the Adomian 
Decomposition Method, [12].  On substituting 1nA  and 2nA  
into (18) and simplifying, we obtain the iterative scheme,  
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Similarly, following the same procedure, we obtained the 
schemes for )1(),1(),1(  nynxnw and )1( nz as,  
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Simplifying further and evaluating ,...,2,1,0n we derive the 
ETM iterative scheme presented as (24) – (28). This is the 
numerical solution of the HIV Superinfection model.    

  ...14.11332000 2  tttq           (24)  

  ...14.11331000 2  tttw           (25)  

  ...7.235.8100 2  tttx             (26)  

  ...57525.16501.310 2  ttty          (27)  

  ...632.234.1110 2  tttz           (28)  
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V. NUMERICAL SIMULATION  

 
Figure 1. The plot of healthy uninfected cells versus time 
 

 
Figure 2. The plot of infected cells versus time 
 

 
Figure 3. The plot of CD4+T cells versus time 
 

 
Figure 4. The plot of viral strains versus time 

 
VI. DISCUSSION OF RESULT 

 The iterative scheme (24) – (28) is the solution obtained for 
the HIV Superinfection model using the ETM. The method 
provides an exact analytical solution that is known to converge 
faster than other traditional methods such as the Laplace 
Transform and Fourier Transform. It is easier to use and more 
efficient. This agrees with the findings of [8], [10], [11]. The 
scheme was used to predict the behavior of the HIV 
Superinfection model as seen in Fig. 1, Fig. 2, Fig. 3, and Fig. 
4.        

Fig. 1 shows the time plot of healthy uninfected cells. We 
observe a decline in the population of healthy cells. Equation 
(24) agrees with this. In the first iteration,  0q = 2000 is 
obvious. Subsequently, all other terms in (24) are decreasing 
functions  tq  , so that  tq  will keep declining t . The 
activities of viral strains are responsible for this decline. The 
safe level is 200mm3. Below this indicator, the system shall 
proceed from HIV to full-blown AIDS. 

In Fig. 2, the graph shows the plot of primarily infected cells 
and superinfected cells. It can be observed that the system has 
been infected with two viral strains. Hence, the population of 
healthy cells that are observed to be declining in Fig. 1 is a 
result of the increase in the population of primarily infected 
and superinfected cells. The activities of the cells and viral 
strains are directly dependent.  

Equations (25) and (26) represent the functions of primarily 
infected cells and superinfected cells respectively. In (25), 
only  0w  is positive. All other terms are decreasing terms. 
But in (26), whereas the first term  tx  is positive, the 
succeeding terms are both increasing and decreasing terms. 
This explains why the rate of infection of primarily infected 
cells is greater than that of the superinfected cells. 

Fig. 3 shows the plots of uninfected cells, primarily infected 
cells, and superinfected cells. Whereas the populations of 
primarily infected and superinfected cells are on the increase, 
the population of uninfected cells is decreasing. The system 
has been engulfed and hijacked by the two viral strains. This 
resulted in a decline in the growth of uninfected cells. Positive 
growth is also observed in the population of infected cells. 

Fig. 4 shows the growth of the two viral strains in the 
system. The two viral trains co-exist and co-circulate in the 
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system. It is observed that the rate of replication of Vs is 
slightly greater than that of .pV  (27) and (28) representing the 
functions for viral strain 1 and viral strain 2 respectively. By 
observation, all the terms in both equations are positive terms 
except the initial terms. The populations of the viral strains are 
on the increase.    

 
VII. CONCLUSION 

Several transform methods have been used in literature to 
solve infectious disease models. However, the Elzaki 
Transform Method has not been applied particularly to HIV 
Superinfection models. Thus, in this work, we use the Elzaki 
Transform Method to solve an HIV Superinfection model. The 
solution of the ETM gives a recursive scheme that was used to 
predict and interpret the behavior of the system.            
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